Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of β-arrestin and TRAF6 negatively regulates Toll-like receptor–interleukin 1 receptor signaling

Abstract

Tumor necrosis factor receptor–associated factor 6 (TRAF6) is critical for mediating Toll-like receptor (TLR)–interleukin 1 receptor (IL-1R) signaling and subsequent activation of NF-κB and AP-1, transcriptional activators of innate immunity. Here we show that β-arrestins, a family of multifunctional proteins, directly interacted with TRAF6 after TLR–IL-1R activation. Formation of the β-arrestin–TRAF6 complex prevented autoubiquitination of TRAF6 and activation of NF-κB and AP-1. Endotoxin-treated β-arrestin 2–deficient mice had higher expression of proinflammatory cytokines and were more susceptible to endotoxic shock. Thus, β-arrestins are essential negative regulators of innate immune activation via TLR–IL-1R signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct interaction of β-arrestins with TRAF6.
Figure 2: Agonist-stimulated interaction of β-arrestins with TRAF6.
Figure 3: Mapping the regions of interaction between β-arrestins and TRAF6.
Figure 4: The β-arrestins prevent TRAF6 autoubiquitination and oligomerization.
Figure 5: Inhibition of AP-1 and NF-κB activation by β-arrestins.
Figure 6: The β-arrestins regulate cytokine production.
Figure 7: Mice deficient in β-arrestin 2 are more susceptible to endotoxic shock than are wild-type mice.

Similar content being viewed by others

References

  1. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Dunne, A. & O'Neill, L.A. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003, 3–17 (2003).

    Google Scholar 

  3. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bradley, J.R. & Pober, J.S. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20, 6482–6491 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Chung, J.Y., Park, Y.C., Ye, H. & Wu, H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115, 679–688 (2002).

    CAS  PubMed  Google Scholar 

  6. Lomaga, M.A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Lefkowitz, R.J. & Whalen, E.J. β-Arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16, 162–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Wilbanks, A.M. et al. β-arrestin 2 regulates zebrafish development through the hedgehog signaling pathway. Science 306, 2264–2267 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, W. et al. Activity-dependent internalization of smoothened mediated by β-arrestin 2 and GRK2. Science 306, 2257–2260 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Perry, S.J. & Lefkowitz, R.J. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol. 12, 130–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, W. β-Arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling. Science 301, 1394–1397 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, W. et al. Dishevelled 2 recruits β-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301, 1391–1394 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Luttrell, L.M., Daaka, Y. & Lefkowitz, R.J. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr. Opin. Cell Biol. 11, 177–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. McDonald, P.H. et al. β-Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574–1577 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Shenoy, S.K., McDonald, P.H., Kohout, T.A. & Lefkowitz, R.J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294, 1307–1313 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, P. et al. β-Arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J. Biol. Chem. 278, 6363–6370 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Gao, H. et al. Identification of β-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-κB pathways. Mol. Cell 14, 303–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Sun, L., Deng, L., Ea, C.K., Xia, Z.P. & Chen, Z.J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi, T., Walsh, M.C. & Choi, Y. The role of TRAF6 in signal transduction and the immune response. Microbes Infect. 6, 1333–1338 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Li, X., Yang, Y. & Ashwell, J.D. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416, 345–347 (2002).

    Article  PubMed  Google Scholar 

  28. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, Z. et al. Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NF-κB and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6–TAK1-TAB2-PKR. J. Biol. Chem. 278, 16713–16719 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, Z., Mak, T.W., Sen, G. & Li, X. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-β. Proc. Natl. Acad. Sci. USA 101, 3533–3538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, L.G. et al. VISA Is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Pahl, H.L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18, 6853–6866 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Akira, S. Toll-like receptor signaling. J. Biol. Chem. 278, 38105–38108 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Barton, G.M. & Medzhitov, R. Toll-like receptor signaling pathways. Science 300, 1524–1525 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Bohn, L.M., Gainetdinov, R.R., Lin, F.T., Lefkowitz, R.J. & Caron, M.G. μ-opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence. Nature 408, 720–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Bohn, L.M. et al. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286, 2495–2498 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Beaulieu, J.M. et al. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122, 261–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Witherow, D.S., Garrison, T.R., Miller, W.E. & Lefkowitz, R.J. β-Arrestin inhibits NF-κB activity by means of its interaction with the NF-κB inhibitor IκBα. Proc. Natl. Acad. Sci. USA 101, 8603–8607 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R.J. Lefkowitz for anti-β-arrestin, MEF cell lines and β-arrestin 2–deficient mice; H. Shu for TRAF1–TRAF6 and TLR3 expression constructs; D. Bohmann for the ubiquitin plasmid; and B. Su for reading the manuscript. Supported by the Ministry of Science and Technology, the National Natural Science Foundation of China and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Pei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic representation of wild-type and deletion mutants of TRAF6 and β-arrestins. (PDF 376 kb)

Supplementary Fig. 2

The TRAF-N domain was required for TRAF6 autoubiquitination and oligomerization. (PDF 296 kb)

Supplementary Fig. 3

IKK activity was augmented in bone marrow-derived macrophages (BMDMs) from Arrb2−/− mice. (PDF 127 kb)

Supplementary Fig. 4

Endogenous TRAF6 autoubiquitination was detected in Arrb−/− MEFs and HeLa cells. (PDF 312 kb)

Supplementary Fig. 5

β-Arrestins regulated cytokine production in HeLa cells. (PDF 236 kb)

Supplementary Fig. 6

Expression of β-arrestins was unaffected in macrophages after LPS stimulation. (PDF 114 kb)

Supplementary Note (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Tang, Y., Teng, L. et al. Association of β-arrestin and TRAF6 negatively regulates Toll-like receptor–interleukin 1 receptor signaling. Nat Immunol 7, 139–147 (2006). https://doi.org/10.1038/ni1294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing