Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling

Abstract

CD22 is a negative regulator of B cell signaling, an activity modulated by its interaction with glycan ligands containing α2-6-linked sialic acids. B cells deficient in the enzyme (ST6Gal I) that forms the CD22 ligand show suppressed BCR signaling. Here we report that mice deficient in both CD22 and its ligand (Cd22−/−St6gal1−/− mice) showed restored B cell receptor (BCR) signaling, suggesting that the suppressed signaling of St6gal1−/− cells is mediated through CD22. Coincident with suppressed BCR signaling, B cells lacking ST6Gal I showed a net redistribution of the BCR to clathrin-rich microdomains containing most of the CD22, resulting in a twofold increase in the localization of CD22 together with the BCR. These studies suggest an important function for the CD22-ligand interaction in regulating BCR signaling and microdomain localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ablation of CD22 and its ligands in double-knockout mice.
Figure 2: Restored BCR-mediated signaling of double-knockout B cells.
Figure 3: Increased localization of CD22 and surface IgM in the absence of CD22 ligands.
Figure 4: Increased localization of CD22 together with surface IgM in GM1- and clathrin-rich membrane microdomains.
Figure 5: Microdomain localization of surface IgM in double-knockout cells is restored, whereas ST6Gal I–deficient B cells have altered surface IgM microdomain localization.

Similar content being viewed by others

References

  1. Tsubata, T. & Wienands, J. B cell signaling. Introduction. Int. Rev. Immunol. 20, 675–678 (2001).

    Article  CAS  Google Scholar 

  2. Tedder, T.F., Poe, J.C. & Haas, K.M. CD22: A Multifunctional Receptor That Regulates B Lymphocyte Survival and Signal Transduction. Adv. Immunol. 88, 1–50 (2005).

    Article  CAS  Google Scholar 

  3. Tedder, T.F., Tuscano, J., Sato, S. & Kehrl, J.H. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu. Rev. Immunol. 15, 481–504 (1997).

    Article  CAS  Google Scholar 

  4. Cyster, J.G. & Goodnow, C.C. Tuning antigen receptor signaling by CD22: integrating cues from antigens and the microenvironment. Immunity 6, 509–517 (1997).

    Article  CAS  Google Scholar 

  5. Nitschke, L., Carsetti, R., Ocker, B., Kohler, G. & Lamers, M.C. CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7, 133–143 (1997).

    Article  CAS  Google Scholar 

  6. O'Keefe, T.L., Williams, G.T., Batista, F.D. & Neuberger, M.S. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J. Exp. Med. 189, 1307–1313 (1999).

    Article  CAS  Google Scholar 

  7. O'Keefe, T.L., Williams, G.T., Davies, S.L. & Neuberger, M.S. Hyperresponsive B cells in CD22-deficient mice. Science 274, 798–801 (1996).

    Article  CAS  Google Scholar 

  8. Otipoby, K.L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634–637 (1996).

    Article  CAS  Google Scholar 

  9. Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551–562 (1996).

    Article  CAS  Google Scholar 

  10. Blasioli, J., Paust, S. & Thomas, M.L. Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J. Biol. Chem. 274, 2303–2307 (1999).

    Article  CAS  Google Scholar 

  11. Doody, G.M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242–244 (1995).

    Article  CAS  Google Scholar 

  12. Cornall, R.J. et al. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8, 497–508 (1998).

    Article  CAS  Google Scholar 

  13. Smith, K.G., Tarlinton, D.M., Doody, G.M., Hibbs, M.L. & Fearon, D.T. Inhibition of the B cell by CD22: a requirement for Lyn. J. Exp. Med. 187, 807–811 (1998).

    Article  CAS  Google Scholar 

  14. Zhang, M. & Varki, A. Cell surface sialic acids do not affect primary CD22 interactions with CD45 and surface IgM nor the rate of constitutive CD22 endocytosis. Glycobiology 14, 939–949 (2004).

    Article  CAS  Google Scholar 

  15. Phee, H., Rodgers, W. & Coggeshall, K.M. Visualization of negative signaling in B cells by quantitative confocal microscopy. Mol. Cell. Biol. 21, 8615–8625 (2001).

    Article  CAS  Google Scholar 

  16. Peaker, C.J. & Neuberger, M.S. Association of CD22 with the B cell antigen receptor. Eur. J. Immunol. 23, 1358–1363 (1993).

    Article  CAS  Google Scholar 

  17. Law, C.L., Sidorenko, S.P. & Clark, E.A. Regulation of lymphocyte activation by the cell-surface molecule CD22. Immunol. Today 15, 442–449 (1994).

    Article  CAS  Google Scholar 

  18. Leprince, C., Draves, K.E., Geahlen, R.L., Ledbetter, J.A. & Clark, E.A. CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proc. Natl. Acad. Sci. USA 90, 3236–3240 (1993).

    Article  CAS  Google Scholar 

  19. Crocker, P.R. Siglecs in innate immunity. Curr. Opin. Pharmacol. 5, 431–437 (2005).

    Article  CAS  Google Scholar 

  20. Varki, A. & Angata, T. Siglecs - the Major Sub-family of I-type Lectins. Glycobiology (2005).

  21. Crocker, P.R. & Varki, A. Siglecs in the immune system. Immunology 103, 137–145 (2001).

    Article  CAS  Google Scholar 

  22. Kelm, S. et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 4, 965–972 (1994).

    Article  CAS  Google Scholar 

  23. Powell, L.D., Jain, R.K., Matta, K.L., Sabesan, S. & Varki, A. Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22. Evidence for a minimal structural recognition motif and the potential importance of multisite binding. J. Biol. Chem. 270, 7523–7532 (1995).

    Article  CAS  Google Scholar 

  24. Blixt, O., Collins, B.E., van den Nieuwenhof, I.M., Crocker, P.R. & Paulson, J.C. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278, 31007–31019 (2003).

    Article  CAS  Google Scholar 

  25. Lo, N.W. & Lau, J.T. Transcription of the β-galactoside α2,6-sialyltransferase gene (SIAT1) in B-lymphocytes: cell type-specific expression correlates with presence of the divergent 5′-untranslated sequence. Glycobiology 9, 907–914 (1999).

    Article  CAS  Google Scholar 

  26. Kitagawa, H. & Paulson, J.C. Differential expression of five sialyltransferase genes in human tissues. J. Biol. Chem. 269, 17872–17878 (1994).

    CAS  PubMed  Google Scholar 

  27. Hennet, T., Chui, D., Paulson, J.C. & Marth, J.D. Immune regulation by the ST6Gal sialyltransferase. Proc. Natl. Acad. Sci. USA 95, 4504–4509 (1998).

    Article  CAS  Google Scholar 

  28. Sgroi, D., Varki, A., Braesch-Andersen, S. & Stamenkovic, I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J. Biol. Chem. 268, 7011–7018 (1993).

    CAS  PubMed  Google Scholar 

  29. Law, C.L., Aruffo, A., Chandran, K.A., Doty, R.T. & Clark, E.A. Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J. Immunol. 155, 3368–3376 (1995).

    CAS  PubMed  Google Scholar 

  30. Han, S., Collins, B.E., Bengston, P. & Paulson, J.C. Homo-multimeric complexes of CD22 in B cells revealed by protein-glycan crosslinking. Nat. Chem. Biol. 1, 93–97 (2005).

    Article  CAS  Google Scholar 

  31. Collins, B.E. et al. Constitutively unmasked CD22 on B cells of ST6Gal I knockout mice: novel sialoside probe for murine CD22. Glycobiology 12, 563–571 (2002).

    Article  CAS  Google Scholar 

  32. Razi, N. & Varki, A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc. Natl. Acad. Sci. USA 95, 7469–7474 (1998).

    Article  CAS  Google Scholar 

  33. Danzer, C.P., Collins, B.E., Blixt, O., Paulson, J.C. & Nitschke, L. Transitional and marginal zone B cells have a high proportion of unmasked CD22: implications for BCR signaling. Int. Immunol. 15, 1137–1147 (2003).

    Article  CAS  Google Scholar 

  34. Jin, L., McLean, P.A., Neel, B.G. & Wortis, H.H. Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J. Exp. Med. 195, 1199–1205 (2002).

    Article  CAS  Google Scholar 

  35. Kelm, S., Gerlach, J., Brossmer, R., Danzer, C.P. & Nitschke, L. The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J. Exp. Med. 195, 1207–1213 (2002).

    Article  CAS  Google Scholar 

  36. Poe, J.C. et al. CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat. Immunol. 5, 1078–1087 (2004).

    Article  CAS  Google Scholar 

  37. Crocker, P.R. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 12, 609–615 (2002).

    Article  CAS  Google Scholar 

  38. Nitschke, L. & Tsubata, T. Molecular interactions regulate BCR signal inhibition by CD22 and CD72. Trends Immunol. 25, 543–550 (2004).

    Article  CAS  Google Scholar 

  39. Smith, K.G. & Fearon, D.T. Receptor modulators of B-cell receptor signalling–CD19/CD22. Curr. Top. Microbiol. Immunol. 245, 195–212 (2000).

    CAS  PubMed  Google Scholar 

  40. Lajaunias, F. et al. Differential control of CD22 ligand expression on B and T lymphocytes, and enhanced expression in murine systemic lupus. Arthritis Rheum. 48, 1612–1621 (2003).

    Article  CAS  Google Scholar 

  41. Samardzic, T. et al. Reduction of marginal zone B cells in CD22-deficient mice. Eur. J. Immunol. 32, 561–567 (2002).

    Article  CAS  Google Scholar 

  42. Nadler, M.J., McLean, P.A., Neel, B.G. & Wortis, H.H. B cell antigen receptor-evoked calcium influx is enhanced in CD22-deficient B cell lines. J. Immunol. 159, 4233–4243 (1997).

    CAS  PubMed  Google Scholar 

  43. Lenschow, D.J. et al. Differential up-regulation of the B7–1 and B7–2 costimulatory molecules after Ig receptor engagement by antigen. J. Immunol. 153, 1990–1997 (1994).

    CAS  PubMed  Google Scholar 

  44. Dykstra, M., Cherukuri, A. & Pierce, S.K. Rafts and synapses in the spatial organization of immune cell signaling receptors. J. Leukoc. Biol. 70, 699–707 (2001).

    CAS  PubMed  Google Scholar 

  45. Vallejo, J. & Hardin, C.D. Expression of caveolin-1 in lymphocytes induces caveolae formation and recruitment of phosphofructokinase to the plasma membrane. FASEB J. 19, 586–587 (2005).

    Article  CAS  Google Scholar 

  46. Hanasaki, K., Powell, L.D. & Varki, A. Binding of human plasma sialoglycoproteins by the B cell-specific lectin CD22. Selective recognition of immunoglobulin M and haptoglobin. J. Biol. Chem. 270, 7543–7550 (1995).

    Article  CAS  Google Scholar 

  47. Poe, J.C. et al. Severely impaired B lymphocyte proliferation, survival, and induction of the c-Myc:Cullin 1 ubiquitin ligase pathway resulting from CD22 deficiency on the C57BL/6 genetic background. J. Immunol. 172, 2100–2110 (2004).

    Article  CAS  Google Scholar 

  48. Stoddart, A. et al. Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 17, 451–462 (2002).

    Article  CAS  Google Scholar 

  49. Stoddart, A., Jackson, A.P. & Brodsky, F.M. Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol. Biol. Cell 16, 2339–2348 (2005).

    Article  CAS  Google Scholar 

  50. Pierce, S.K. Lipid rafts and B-cell activation. Nat. Rev. Immunol. 2, 96–105 (2002).

    Article  CAS  Google Scholar 

  51. Cherukuri, A., Cheng, P.C. & Pierce, S.K. The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J. Immunol. 167, 163–172 (2001).

    Article  CAS  Google Scholar 

  52. Cherukuri, A. et al. The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts. J. Immunol. 172, 370–380 (2004).

    Article  CAS  Google Scholar 

  53. John, B. et al. The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. J. Immunol. 170, 3534–3543 (2003).

    Article  CAS  Google Scholar 

  54. Pflugh, D.L., Maher, S.E. & Bothwell, A.L. Ly-6 superfamily members Ly-6A/E, Ly-6C, and Ly-6I recognize two potential ligands expressed by B lymphocytes. J. Immunol. 169, 5130–5136 (2002).

    Article  Google Scholar 

  55. Jascur, T. et al. Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein. Mol. Cell 17, 237–249 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Marth and L. Nitschke for ST6Gal I–deficient and CD22-deficient mice, respectively; H. Li and M. Iufer for technical assistance and A. Tran-Crie for assistance in manuscript preparation. Supported by the National Institutes of Health (AI050143 to J.C.P. and GM25042 to B.E.C.) and the Wenner-Gren Foundation (P.B.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C Paulson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Restored phosphorylation of cytoplasmic proteins in B cells from double-knockout mice. (PDF 521 kb)

Supplementary Fig. 2

Similar CD22 and IgM co-clustering following BCR crosslinking on B cells from WT or ST6Gal I null mice. (PDF 89 kb)

Supplementary Methods (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, B., Smith, B., Bengtson, P. et al. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat Immunol 7, 199–206 (2006). https://doi.org/10.1038/ni1283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing