Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin 15 controls the generation of the restricted T cell receptor repertoire of γδ intestinal intraepithelial lymphocytes

Abstract

The γδ T cells are prevalent in the mucosal epithelia and are postulated to act as 'sentries' for maintaining tissue integrity. What these γδ T cells recognize is poorly defined, but given the restricted T cell receptor (TCR) repertoire, the idea that they are selected by self antigens of low complexity has been widely disseminated. Here we present data showing that the generation of the restricted TCR variable γ-region gene repertoire of intestinal intraepithelial lymphocytes was regulated by interleukin 15, which induced local chromatin modifications specific for the variable γ-region gene segment and enhanced accessibility conducive to subsequent targeted gene rearrangement. This cytokine-directed tissue-specific TCR repertoire formation probably reflects distinct TCR repertoire selection criteria for γδ and αβ T cell lineages adopted for different antigen-recognition strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The generation of Vγ5+ γδ thymocytes is controlled by IL-15.
Figure 2: Histone acetylation patterns correlate with Vγ gene usage.
Figure 3: IL-15 regulates transcriptional activity and alters histone chromatin modification specifically at the Vγ5 gene segment independent of RAG-mediated Tcrg rearrangement in thymocytes.
Figure 4: Comparison of Vγ5 gene segment–specific transcriptional activity and chromatin accessibility in the intestine versus the thymus.
Figure 5: Increased AcH3 modification at the Vγ5 gene segment that results from Il15 transgene expression is dependent on FL-STAT5.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Chen, Y., Chou, K., Fuchs, E., Havran, W.L. & Boismenu, R. Protection of the intestinal mucosa by intraepithelial γδ T cells. Proc. Natl. Acad. Sci. USA 99, 14338–14343 (2002).

    Article  CAS  Google Scholar 

  2. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002).

    Article  CAS  Google Scholar 

  3. Cheroutre, H. Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu. Rev. Immunol. 22, 217–246 (2004).

    Article  CAS  Google Scholar 

  4. Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  Google Scholar 

  5. Goodman, T. & LeFrancois, L. Intraepithelial lymphocytes. Anatomical site, not T cell receptor form, dictates phenotype and function. J. Exp. Med. 170, 1569–1581 (1989).

    Article  CAS  Google Scholar 

  6. Pereira, P., Lafaille, J.J., Gerber, D. & Tonegawa, S. The T cell receptor repertoire of intestinal intraepithelial γδ T lymphocytes is influenced by genes linked to the major histocompatibility complex and to the T cell receptor loci. Proc. Natl. Acad. Sci. USA 94, 5761–5766 (1997).

    Article  CAS  Google Scholar 

  7. Schluns, K.S. et al. Distinct cell types control lymphoid subset development by means of IL-15 and IL-15 receptor α expression. Proc. Natl. Acad. Sci. USA 101, 5616–5621 (2004).

    Article  CAS  Google Scholar 

  8. Lefrancois, L., LeCorre, R., Mayo, J., Bluestone, J.A. & Goodman, T. Extrathymic selection of TCR γδ+ T cells by class II major histocompatibility complex molecules. Cell 63, 333–340 (1990).

    Article  CAS  Google Scholar 

  9. Grigoriadou, K., Boucontet, L. & Pereira, P. T cell receptor-γ allele-specific selection of Vγ1/Vδ4 cells in the intestinal epithelium. J. Immunol. 169, 3736–3743 (2002).

    Article  CAS  Google Scholar 

  10. Correa, I. et al. Most γδ T cells develop normally in β2-microglobulin-deficient mice. Proc. Natl. Acad. Sci. USA 89, 653–657 (1992).

    Article  CAS  Google Scholar 

  11. Schweighoffer, E. & Fowlkes, B.J. Positive selection is not required for thymic maturation of transgenic γδ T cells. J. Exp. Med. 183, 2033–2041 (1996).

    Article  CAS  Google Scholar 

  12. Pardigon, N., Darche, S., Kelsall, B., Bennink, J.R. & Yewdell, J.W. The TL MHC class Ib molecule has only marginal effects on the activation, survival and trafficking of mouse small intestinal intraepithelial lymphocytes. Int. Immunol. 16, 1305–1313 (2004).

    Article  CAS  Google Scholar 

  13. Asarnow, D.M., Cado, D. & Raulet, D.H. Selection is not required to produce invariant T cell receptor γ-gene junctional sequences. Nature 362, 158–160 (1993).

    Article  CAS  Google Scholar 

  14. Xiong, N., Kang, C. & Raulet, D.H. Redundant and unique roles of two enhancer elements in the TCRγ locus in gene regulation and γδ T cell development. Immunity 16, 453–463 (2002).

    Article  CAS  Google Scholar 

  15. Schlissel, M.S., Durum, S.D. & Muegge, K. The interleukin 7 receptor is required for T cell receptor γ locus accessibility to the V(D)J recombinase. J. Exp. Med. 191, 1045–1050 (2000).

    Article  CAS  Google Scholar 

  16. Ye, S.K. et al. The IL-7 receptor controls the accessibility of the TCRγ locus by STAT5 and histone acetylation. Immunity 15, 813–823 (2001).

    Article  CAS  Google Scholar 

  17. Kennedy, M.K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  Google Scholar 

  18. Leishman, A.J. et al. T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL. Science 294, 1936–1939 (2001).

    Article  CAS  Google Scholar 

  19. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    Article  CAS  Google Scholar 

  20. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  Google Scholar 

  21. Meresse, B. et al. Coordinated induction by IL-15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    Article  CAS  Google Scholar 

  22. Crowley, M.P. et al. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287, 314–316 (2000).

    Article  CAS  Google Scholar 

  23. Fehniger, T.A. et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J. Exp. Med. 193, 219–231 (2001).

    Article  CAS  Google Scholar 

  24. Uehara, S., Song, K., Farber, J.M. & Love, P.E. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development: CD3highCD69+ thymocytes and γδTCR+ thymocytes preferentially respond to CCL25. J. Immunol. 168, 134–142 (2002).

    Article  CAS  Google Scholar 

  25. Kang, J. et al. STAT5 is required for thymopoiesis in a development stage-specific manner. J. Immunol. 173, 2307–2314 (2004).

    Article  CAS  Google Scholar 

  26. Leclercq, G., Debacker, V., de Smedt, M. & Plum, J. Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. J. Exp. Med. 184, 325–336 (1996).

    Article  CAS  Google Scholar 

  27. Inagaki-Ohara, K., Nishimura, H., Mitani, A. & Yoshikai, Y. Interleukin-15 preferentially promotes the growth of intestinal intraepithelial lymphocytes bearing γδ T cell receptor in mice. Eur. J. Immunol. 27, 2885–2891 (1997).

    Article  CAS  Google Scholar 

  28. Kwon, J., Morshead, K.B., Guyon, J.R., Kingston, R.E. & Oettinger, M.A. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol. Cell 6, 1037–1048 (2000).

    Article  CAS  Google Scholar 

  29. Malissen, M., Pereira, P., Gerber, D.J., Malissen, B. & DiSanto, J.P. The common cytokine receptor γ chain controls survival of γδ T cells. J. Exp. Med. 186, 1277–1285 (1997).

    Article  CAS  Google Scholar 

  30. Kang, J., Coles, M. & Raulet, D.H. Defective development of γδ T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor γ genes. J. Exp. Med. 190, 973–982 (1999).

    Article  CAS  Google Scholar 

  31. Schlissel, M., Constantinescu, A., Morrow, T., Baxter, M. & Peng, A. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 7, 2520–2532 (1993).

    Article  CAS  Google Scholar 

  32. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287, 495–498 (2000).

    Article  CAS  Google Scholar 

  33. Huang, J., Durum, S.K. & Muegge, K. Cutting edge: histone acetylation and recombination at the Tcrg locus follows IL-7 induction. J. Immunol. 167, 6073–6077 (2001).

    Article  CAS  Google Scholar 

  34. Baker, J.E., Kang, J., Chen, T., Cado, D. & Raulet, D.H. A novel element upstream of the Vγ2 gene in the murine T cell receptor γ locus cooperates with the 3′ enhancer to act as a locus control region. J. Exp. Med. 190, 669–680 (1999).

    Article  CAS  Google Scholar 

  35. Goldman, J., Spencer, D. & Raulet, D. Ordered rearrangement of variable region genes of the T cell receptor γ locus correlates with transcription of the unrearranged genes. J. Exp. Med. 177, 729–739 (1993).

    Article  CAS  Google Scholar 

  36. Agata, Y. et al. Histone acetylation determines the developmentally regulated accessibility for T cell receptor γ gene recombination. J. Exp. Med. 193, 873–880 (2001).

    Article  CAS  Google Scholar 

  37. Reinecker, H.C., MacDermott, R.P., Mirau, S., Dignass, A. & Podolsky, D.K. Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 111, 1706–1713 (1996).

    Article  CAS  Google Scholar 

  38. Murray, A.M., Simm, B. & Beagley, K.W. Cytokine gene expression in murine fetal intestine: potential for extrathymic T cell development. Cytokine 10, 337–345 (1998).

    Article  CAS  Google Scholar 

  39. Guy-Grand, D. et al. Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J. Exp. Med. 197, 333–341 (2003).

    Article  CAS  Google Scholar 

  40. Nonaka, S. et al. Intestinal γδ T cells develop in mice lacking thymus, all lymph nodes, Peyer's patches, and isolated lymphoid follicles. J. Immunol. 174, 1906–1912 (2005).

    Article  CAS  Google Scholar 

  41. Ye, S. et al. Induction of germline transcription in the TCRγ locus by STAT5: Implications for accessibility control by the IL-7 receptor. Immunity 11, 213–223 (1999).

    Article  CAS  Google Scholar 

  42. Teglund, S. et al. STAT5a and STAT5b proteins have essential and non-essential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).

    Article  CAS  Google Scholar 

  43. Cui, Y. et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol. Cell. Biol. 24, 8037–8047 (2004).

    Article  CAS  Google Scholar 

  44. Xiong, N., Kang, C. & Raulet, D.H. Positive selection of dendritic epidermal γδ T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 21, 121–131 (2004).

    Article  CAS  Google Scholar 

  45. Laky, K. et al. Enterocyte expression of interleukin 7 induces development of γδ T cells and Peyer's patches. J. Exp. Med. 191, 1569–1580 (2000).

    Article  CAS  Google Scholar 

  46. Perumal, N.B. et al. TCR-γ genes are rearranged but not transcribed in IL-7Rα-deficient mice. J. Immunol. 158, 5744–5750 (1997).

    CAS  PubMed  Google Scholar 

  47. Meyer, T., Hendry, L., Begitt, A., John, S. & Vinkemeier, U. A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of STAT transcription factors. J. Biol. Chem. 279, 18998–19007 (2004).

    Article  CAS  Google Scholar 

  48. Moriggl, R. et al. STAT5 tetramer formation is associated with leukemogenesis. Cancer Cell 7, 87–99 (2005).

    Article  CAS  Google Scholar 

  49. Pereira, P. & Boucontet, L. Rates of recombination and chain pair biases greatly influence the primary γδ TCR repertoire in the thymus of adult mice. J. Immunol. 173, 3261–3270 (2004).

    Article  CAS  Google Scholar 

  50. Fujihashi, K. et al. Interleukin 2 (IL-2) and interleukin 7 (IL-7) reciprocally induce IL-7 and IL-2 receptors on γδ T-cell receptor-positive intraepithelial lymphocytes. Proc. Natl. Acad. Sci. USA 93, 3613–3618 (1996).

    Article  CAS  Google Scholar 

  51. Damjanovich, S. et al. Preassembly of interleukin 2 (IL-2) receptor subunits on resting Kit 225 K6 T cells and their modulation by IL-2, IL-7, and IL-15: a fluorescence resonance energy transfer study. Proc. Natl. Acad. Sci. USA 94, 13134–13139 (1997).

    Article  CAS  Google Scholar 

  52. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  Google Scholar 

  53. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  Google Scholar 

  54. Xiong, N., Baker, J.E., Kang, C. & Raulet, D.H. The genomic arrangement of T cell receptor variable genes is a determinant of the developmental rearrangement pattern. Proc. Natl. Acad. Sci. USA 101, 260–265 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.H. Raulet for initial support of this work; C. Chambers for discussions; M. Caligiuri, J. Ihle and J. Peschon for Il15-transgenic, FL-STAT5–deficient and Il15−/− mice, respectively; D.H. Raulet, W. Held, L. Berg, M. Bix and members of the lab for critical comments on the manuscript; and K. Pinault and T. Mascenik for assistance with animal husbandry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonsoo Kang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effects of IL-15 in the generation of Vγ5+ γδ T cells. (PDF 265 kb)

Supplementary Table 1

DNA sequences of PCR primers. (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Nguyen, H. & Kang, J. Interleukin 15 controls the generation of the restricted T cell receptor repertoire of γδ intestinal intraepithelial lymphocytes. Nat Immunol 6, 1263–1271 (2005). https://doi.org/10.1038/ni1267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing