Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules

Abstract

The interaction of L-selectin on lymphocytes with sulfated ligands on high endothelial venules leads to rolling and is critical for recruitment of lymphocytes into peripheral lymph nodes. Peripheral node addressin represents a class of L-selectin ligands recognized by the function-blocking monoclonal antibody MECA-79. Its epitope overlaps with sialyl 6-sulfo Lewis X, an L-selectin recognition determinant. Here, mice lacking two N-acetylglucosamine-6-O-sulfotransferases (GlcNAc6ST-1 and GlcNAc6ST-2) demonstrated elimination of both peripheral node addressin and sialyl 6-sulfo Lewis X in high endothelial venules, considerably reduced lymphocyte homing to peripheral lymph nodes and reduced sticking of lymphocytes along high endothelial venules. Our results establish an essential function for the sulfotransferases in L-selectin ligand synthesis and may have relevance for therapy of inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellularity and histological architecture of lymphoid organs in wild-type and GlcNAc6ST-1 and GlcNAc6ST-2 double-knockout mice.
Figure 2: PNAd expression and the presence of GlcNAc6ST-2 protein in peripheral lymph node HEVs of wild-type and GlcNAc6ST-deficient mice.
Figure 3: Sialyl 6-sulfo Lewis X expression in HEVs of wild-type and GlcNAc6ST-deficient lymphoid organs.
Figure 4: Lymphocyte homing to lymph nodes of wild-type and GlcNAc6ST-deficient mice.
Figure 5: Adhesion molecule participation in lymphocyte homing to lymphoid organs of wild-type and double-knockout mice.
Figure 6: Reactivity of selectin chimeras with peripheral lymph node HEVs of wild-type and GlcNAc6ST-null mice.
Figure 7: Rolling and sticking of T cells and B cells along peripheral lymph node HEVs of wild-type and GlcNAc6ST-deficient mice.

Similar content being viewed by others

References

  1. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  2. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  3. Butcher, E.C. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  Google Scholar 

  4. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  5. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  Google Scholar 

  6. Streeter, P.R., Rouse, B.T. & Butcher, E.C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107, 1853–1862 (1988).

    Article  CAS  Google Scholar 

  7. van Zante, A. et al. Lymphocyte-HEV interactions in lymph nodes of a sulfotransferase-deficient mouse. J. Exp. Med. 198, 1289–1300 (2003).

    Article  CAS  Google Scholar 

  8. von Andrian, U.H. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation 3, 287–300 (1996).

    Article  CAS  Google Scholar 

  9. Renkonen, J., Tynninen, O., Hayry, P., Paavonen, T. & Renkonen, R. Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. Am. J. Pathol. 161, 543–550 (2002).

    Article  CAS  Google Scholar 

  10. Lowe, J.B. Glycosylation in the control of selectin counter-receptor structure and function. Immunol. Rev. 186, 19–36 (2002).

    Article  CAS  Google Scholar 

  11. Rosen, S.D., Singer, M.S., Yednock, T.A. & Stoolman, L.M. Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 228, 1005–1007 (1985).

    Article  CAS  Google Scholar 

  12. Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996).

    Article  CAS  Google Scholar 

  13. Imai, Y., Lasky, L.A. & Rosen, S.D. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature 361, 555–557 (1993).

    Article  CAS  Google Scholar 

  14. Hemmerich, S., Bertozzi, C.R., Leffler, H. & Rosen, S.D. Identification of the sulfated monosaccharides of GlyCAM-1, an endothelial-derived ligand for L-selectin. Biochemistry 33, 4820–4829 (1994).

    Article  CAS  Google Scholar 

  15. Yeh, J.C. et al. Novel sulfated lymphocyte homing receptors and their control by a Core1 extension β1,3-N-acetylglucosaminyltransferase. Cell 105, 957–969 (2001).

    Article  CAS  Google Scholar 

  16. Satomaa, T. et al. O-glycans on human high endothelial CD34 putatively participating in L-selectin recognition. Blood 99, 2609–2611 (2002).

    Article  CAS  Google Scholar 

  17. Mitsuoka, C. et al. Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis X. J. Biol. Chem. 273, 11225–11233 (1998).

    Article  CAS  Google Scholar 

  18. Hemmerich, S. et al. Chromosomal localization and genomic organization for the galactose/ N-acetylgalactosamine/N-acetylglucosamine 6-O-sulfotransferase gene family. Glycobiology 11, 75–87 (2001).

    Article  CAS  Google Scholar 

  19. Grunwell, J.R. & Bertozzi, C.R. Carbohydrate sulfotransferases of the GalNAc/Gal/GlcNAc6ST family. in Biochemistry 41, 13117–13126 (2002).

    Article  CAS  Google Scholar 

  20. Uchimura, K. et al. Molecular cloning and characterization of an N-acetylglucosamine-6-O-sulfotransferase. J. Biol. Chem. 273, 22577–22583 (1998).

    Article  CAS  Google Scholar 

  21. Uchimura, K. et al. Human N-acetylglucosamine-6-O-sulfotransferase involved in the biosynthesis of 6-sulfo sialyl Lewis X: molecular cloning, chromosomal mapping, and expression in various organs and tumor cells. J. Biochem. 124, 670–678 (1998).

    Article  CAS  Google Scholar 

  22. Li, X. & Tedder, T.F. CHST1 and CHST2 sulfotransferases expressed by human vascular endothelial cells: cDNA cloning, expression, and chromosomal localization. Genomics 55, 345–347 (1999).

    Article  CAS  Google Scholar 

  23. Bistrup, A. et al. Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J. Cell Biol. 145, 899–910 (1999).

    Article  CAS  Google Scholar 

  24. Hiraoka, N. et al. A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity 11, 79–89 (1999).

    Article  CAS  Google Scholar 

  25. Uchimura, K. et al. Specificities of N-acetylglucosamine-6-O-sulfotransferases in relation to L-selectin ligand synthesis and tumor-associated enzyme expression. J. Biol. Chem. 277, 3979–3984 (2002).

    Article  CAS  Google Scholar 

  26. Rosen, S.D., Tsay, D., Singer, M.S., Hemmerich, S. & Abraham, W.M. Therapeutic targeting of endothelial ligands for L-selectin (PNAd) in a sheep model of asthma. Am. J. Pathol. 166, 935–944 (2005).

    Article  CAS  Google Scholar 

  27. Kimura, N. et al. Reconstitution of functional L-selectin ligands on a cultured human endothelial cell line by cotransfection of α1 → 3 fucosyltransferase VII and newly cloned GlcNAcβ:6-sulfotransferase cDNA. Proc. Natl. Acad. Sci. USA 96, 4530–4535 (1999).

    Article  CAS  Google Scholar 

  28. de Graffenried, C.L. & Bertozzi, C.R. Golgi localization of carbohydrate sulfotransferases is a determinant of L-selectin ligand biosynthesis. J. Biol. Chem. 278, 40282–40295 (2003).

    Article  CAS  Google Scholar 

  29. Hemmerich, S. et al. Sulfation of L-selectin ligands by an HEV-restricted sulfotransferase regulates lymphocyte homing to lymph nodes. Immunity 15, 237–247 (2001).

    Article  CAS  Google Scholar 

  30. Uchimura, K. et al. N-acetylglucosamine 6-O-sulfotransferase-1 regulates expression of L-selectin ligands and lymphocyte homing. J. Biol. Chem. 279, 35001–35008 (2004).

    Article  CAS  Google Scholar 

  31. Duijvestijn, A.M., Schreiber, A.B. & Butcher, E.C. Interferon-γ regulates an antigen specific for endothelial cells involved in lymphocyte traffic. Proc. Natl. Acad. Sci. USA 83, 9114–9118 (1986).

    Article  CAS  Google Scholar 

  32. Bistrup, A. et al. Detection of a sulfotransferase (HEC-GlcNAc6ST) in high endothelial venules of lymph nodes and in high endothelial venule-like vessels within ectopic lymphoid aggregates: relationship to the MECA-79 epitope. Am. J. Pathol. 164, 1635–1644 (2004).

    Article  CAS  Google Scholar 

  33. Hemmerich, S., Butcher, E.C. & Rosen, S.D. Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody. J. Exp. Med. 180, 2219–2226 (1994).

    Article  CAS  Google Scholar 

  34. Gallatin, W., Weissman, I. & Butcher, E. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304, 30–34 (1983).

    Article  CAS  Google Scholar 

  35. Bargatze, R.F., Jutila, M.A. & Butcher, E.C. Distinct roles of L-selectin and integrins α4β7 and LFA-1 in lymphocyte homing to Peyer's patch-HEV in situ: the multistep model confirmed and refined. Immunity 3, 99–108 (1995).

    Article  CAS  Google Scholar 

  36. Kunkel, E.J. et al. The roles of L-selectin, β7 integrins, and P-selectin in leukocyte rolling and adhesion in high endothelial venules of Peyer's patches. in J. Immunol. 161, 2449–2456 (1998).

    CAS  PubMed  Google Scholar 

  37. Streeter, P.R., Berg, E.L., Rouse, B.T., Bargatze, R.F. & Butcher, E.C. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature 331, 41–46 (1988).

    Article  CAS  Google Scholar 

  38. Tangemann, K., Bistrup, A., Hemmerich, S. & Rosen, S.D. Sulfation of a high endothelial venule-expressed ligand for L-selectin. Effects on tethering and rolling of lymphocytes. J. Exp. Med. 190, 935–942 (1999).

    Article  CAS  Google Scholar 

  39. Mebius, R.E. & Watson, S.R. L- and E-selectin can recognize the same naturally occurring ligands on high endothelial venules. J. Immunol. 151, 3252–3260 (1993).

    CAS  PubMed  Google Scholar 

  40. Wang, L., Fuster, M., Sriramarao, P. & Esko, J.D. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat. Immunol. 6, 902–910 (2005).

    Article  CAS  Google Scholar 

  41. Nelson, R.M. et al. Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 82, 3253–3258 (1993).

    CAS  Google Scholar 

  42. Gauguet, J.M., Rosen, S.D., Marth, J.D. & von Andrian, U.H. Core 2 branching β1,6-N-acetylglucosaminyltransferase and high endothelial cell N-acetylglucosamine-6-sulfotransferase exert differential control over B- and T-lymphocyte homing to peripheral lymph nodes. Blood 104, 4104–4112 (2004).

    Article  CAS  Google Scholar 

  43. Stein, J.V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).

    Article  CAS  Google Scholar 

  44. Rosen, S.D. Endothelial ligands for L-selectin: from lymphocyte recirculation to allograft rejection. Am. J. Pathol. 155, 1013–1020 (1999).

    Article  CAS  Google Scholar 

  45. Kawashima, H. et al. N-acetylglucosamine-6-O-sulfotransferase-1 and -2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat. Immunol. advance online publication 9 October 2005 (1038/ni 1259).

  46. Lee, J.K., Bistrup, A., van Zante, A. & Rosen, S.D. Activities and expression pattern of the carbohydrate sulfotransferase GlcNAc6ST-3 (I-GlcNAc6ST): functional implications. Glycobiology 13, 245–254 (2003).

    Article  CAS  Google Scholar 

  47. Hiraoka, N. et al. Core 2 branching β1,6-N-acetylglucosaminyltransferase and high endothelial venule-restricted sulfotransferase collaboratively control lymphocyte homing. J. Biol. Chem. 279, 3058–3067 (2004).

    Article  CAS  Google Scholar 

  48. M'Rini, C. et al. A novel endothelial L-selectin ligand activity in lymph node medulla that is regulated by α(1,3)-fucosyltransferase-IV. J. Exp. Med. 198, 1301–1312 (2003).

    Article  CAS  Google Scholar 

  49. Hemmerich, S. & Rosen, S.D. 6'-sulfated sialyl Lewis x is a major capping group of GlyCAM-1. Biochemistry 33, 4830–4835 (1994).

    Article  CAS  Google Scholar 

  50. Hemmerich, S., Leffler, H. & Rosen, S.D. Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J. Biol. Chem. 270, 12035–12047 (1995).

    Article  CAS  Google Scholar 

  51. Torii, T., Fukuta, M. & Habuchi, O. Sulfation of sialyl N-acetyllactosamine oligosaccharides and fetuin oligosaccharides by keratan sulfate Gal-6-sulfotransferase. Glycobiology 10, 203–211 (2000).

    Article  CAS  Google Scholar 

  52. Galkina, E. et al. L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J. Exp. Med. 198, 1323–1335 (2003).

    Article  CAS  Google Scholar 

  53. Izawa, M. et al. Expression of sialyl 6-sulfo Lewis X is inversely correlated with conventional sialyl Lewis X expression in human colorectal cancer. Cancer Res. 60, 1410–1416 (2000).

    CAS  PubMed  Google Scholar 

  54. Manjunath, N. et al. A transgenic mouse model to analyze CD8+ effector T cell differentiation in vivo. Proc. Natl. Acad. Sci. USA 96, 13932–13937 (1999).

    Article  CAS  Google Scholar 

  55. von Andrian, U.H. & M'Rini, C. In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes. Commun. 6, 85–96 (1998).

    Article  CAS  Google Scholar 

  56. Pries, A.R. A versatile video image analysis system for microcirculatory research. Int. J. Microcirc. Clin. Exp. 7, 327–345 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bistrup for discussions; Y.-Q. Wang for assistance with maintenance of the mouse colony, and M. Izawa for technical support. Supported by the National Institutes of Health (R01-GM57411 and R37-GM23547 to S.D.R. and HL54936, AI061663 and HL56949 to U.H.v.A.) the Japan Society for the Promotion of Science (K.U.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D Rosen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchimura, K., Gauguet, JM., Singer, M. et al. A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat Immunol 6, 1105–1113 (2005). https://doi.org/10.1038/ni1258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing