Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells

Abstract

The involvement of the tetrameric adaptor protein 1 (AP-1) complex in protein sorting in intracellular compartments is not yet completely defined. Here we report that in immature dendritic cells, the β1- and γ-subunits of AP-1 underwent caspase 3–catalyzed cleavage in their hinge regions, resulting in removal of the C-terminal 'ear' domains. Cleavage was inhibited by lipopolysaccharide or caspase inhibitors, each of which led to maturation of the dendritic cells, demonstrated by endosomal remodeling and an increase in surface expression of peptide-loaded major histocompatibility complex class II. Overexpression of similarly truncated AP-1 together with 'silencing' of the endogenous genes in immature dendritic cells did not compromise delivery of major histocompatibility complex class II invariant chain to endosomal compartments. However, after lipopolysaccharide-induced maturation, overexpression of truncated AP-1 and 'silencing' of endogenous genes did result in the anomalous surface accumulation of invariant chain and the peptide-editing molecule H2-DM. Thus, at least one function for intact AP-1 is to retain some proteins in endosomes during the dendritic cell maturation process in which others are allowed to egress to the cell surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cleavage of β- and γ-adaptins in cultured or freshly isolated immature DCs.
Figure 2: Cleaved γ-adaptin assembles into the AP-1 complex and the cleavage of γ-adaptin is reduced by LPS and caspase inhibitor.
Figure 3: Identification of β- and γ-adaptin caspase cleavage sites.
Figure 4: The μ1 siRNA enhances surface Ii expression.
Figure 5: Treatment of DCs with caspase inhibitor induces redistribution of MHC class II to the cell surface.
Figure 6: AP-1 localizes near tubular endosomes in caspase inhibitor–treated BMDCs.
Figure 7: Truncated AP-1 fails to retain MHC class II–Ii and H2-DM in endosomes in maturing DCs.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  2. Santambrogio, L., Sato, A.K., Fischer, F.R., Dorf, M.E. & Stern, L.J. Abundant empty class II MHC molecules on the surface of immature dendritic cells. Proc. Natl. Acad. Sci. USA 96, 15050–15055 (1999).

    Article  CAS  Google Scholar 

  3. Santambrogio, L. et al. Extracellular antigen processing and presentation by immature dendritic cells. Proc. Natl. Acad. Sci. USA 96, 15056–15061 (1999).

    Article  CAS  Google Scholar 

  4. Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003).

    Article  CAS  Google Scholar 

  5. Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–63 (2001).

    Article  CAS  Google Scholar 

  6. Barois, N., de Saint-Vis, B., Lebecque, S., Geuze, H.J. & Kleijmeer, M.J. MHC class II compartments in human dendritic cells undergo profound structural changes upon activation. Traffic 3, 894–905 (2002).

    Article  CAS  Google Scholar 

  7. Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418, 988–994 (2002).

    Article  CAS  Google Scholar 

  8. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002).

    Article  CAS  Google Scholar 

  9. Villadangos, J.A. et al. MHC class II expression is regulated in dendritic cells independently of invariant chain degradation. Immunity 14, 739–749 (2001).

    Article  CAS  Google Scholar 

  10. Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).

    Article  CAS  Google Scholar 

  11. Barton, G.M. & Rudensky, A.Y. An altered invariant chain protein with an antigenic peptide in place of CLIP forms SDS-stable complexes with class II alphabeta dimers and facilitates highly efficient peptide loading. Int. Immunol. 10, 1159–1165 (1998).

    Article  CAS  Google Scholar 

  12. Traub, L.M., Kornfeld, S. & Ungewickell, E. Different domains of the AP-1 adaptor complex are required for Golgi membrane binding and clathrin recruitment. J. Biol. Chem. 270, 4933–4942 (1995).

    Article  CAS  Google Scholar 

  13. Traub, L.M., Downs, M.A., Westrich, J.L. & Fremont, D.H. Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc. Natl. Acad. Sci. USA 96, 8907–8912 (1999).

    Article  CAS  Google Scholar 

  14. Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  Google Scholar 

  15. Doray, B., Ghosh, P., Griffith, J., Geuze, H.J. & Kornfeld, S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297, 1700–1703 (2002).

    Article  CAS  Google Scholar 

  16. Hofmann, M.W. et al. The leucine-based sorting motifs in the cytoplasmic domain of the invariant chain are recognized by the clathrin adaptors AP1 and AP2 and their medium chains. J. Biol. Chem. 274, 36153–36158 (1999).

    Article  CAS  Google Scholar 

  17. Kongsvik, T.L., Honing, S., Bakke, O. & Rodionov, D.G. Mechanism of interaction between leucine-based sorting signals from the invariant chain and clathrin-associated adaptor protein complexes AP1 and AP2. J. Biol. Chem. 277, 16484–16488 (2002).

    Article  CAS  Google Scholar 

  18. Brachet, V., Pehau-Arnaudet, G., Desaymard, C., Raposo, G. & Amigorena, S. Early endosomes are required for major histocompatiblity complex class II transport to peptide-loading compartments. Mol. Biol. Cell 10, 2891–2904 (1999).

    Article  CAS  Google Scholar 

  19. Glickman, J.N., Morton, P.A., Slot, J.W., Kornfeld, S. & Geuze, H. The biogenesis of the MHC class II compartment in human I-cell disease B lymphoblasts. J. Cell Biol. 132, 769–785 (1996).

    Article  CAS  Google Scholar 

  20. Wong, S.H., Santambrogio, L. & Strominger, J.L. Caspases and nitric oxide broadly regulate dendritic cell maturation and surface expression of class II MHC proteins. Proc. Natl. Acad. Sci. USA 101, 17783–17788 (2004).

    Article  CAS  Google Scholar 

  21. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543 (1993).

    Article  CAS  Google Scholar 

  22. Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328 (1997).

    Article  CAS  Google Scholar 

  23. Rossig, L. et al. Nitric oxide inhibits caspase-3 by S-nitrosylation in vivo. J. Biol. Chem. 274, 6823–6826 (1999).

    Article  CAS  Google Scholar 

  24. Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2, 907–916 (2001).

    Article  CAS  Google Scholar 

  25. Li, J., Billiar, T.R., Talanian, R.V. & Kim, Y.M. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun. 240, 419–424 (1997).

    Article  CAS  Google Scholar 

  26. Woo, M. et al. Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat. Immunol. 4, 1016–1022 (2003).

    Article  CAS  Google Scholar 

  27. Nogi, T. et al. Structural basis for the accessory protein recruitment by the gamma-adaptin ear domain. Nat. Struct. Biol. 9, 527–531 (2002).

    CAS  Google Scholar 

  28. Duncan, M.C., Costaguta, G. & Payne, G.S. Yeast epsin-related proteins required for Golgi-endosome traffic define a γ-adaptin ear-binding motif. Nat. Cell Biol. 5, 77–81 (2003).

    Article  CAS  Google Scholar 

  29. Mills, I.G. et al. EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. J. Cell Biol. 160, 213–222 (2003).

    Article  Google Scholar 

  30. Bremnes, T., Lauvrak, V., Lindqvist, B. & Bakke, O. A region from the medium chain adaptor subunit (mu) recognizes leucine- and tyrosine-based sorting signals. J. Biol. Chem. 273, 8638–8645 (1998).

    Article  CAS  Google Scholar 

  31. Kang, S., Liang, L., Parker, C.D. & Collawn, J.F. Structural requirements for major histocompatibility complex class II invariant chain endocytosis and lysosomal targeting. J. Biol. Chem. 273, 20644–20652 (1998).

    Article  CAS  Google Scholar 

  32. Nordeng, T.W. et al. The cytoplasmic tail of invariant chain regulates endosome fusion and morphology. Mol. Biol. Cell 13, 1846–1856 (2002).

    Article  CAS  Google Scholar 

  33. Robinson, M.S. & Bonifacino, J.S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).

    Article  CAS  Google Scholar 

  34. Hirst, J., Motley, A., Harasaki, K., Peak Chew, S.Y. & Robinson, M.S. EpsinR: an ENTH domain-containing protein that interacts with AP-1. Mol. Biol. Cell 14, 625–641 (2003).

    Article  CAS  Google Scholar 

  35. Mayhew, T.M., Griffiths, G. & Lucocq, J.M. Applications of an efficient method for comparing immunogold labelling patterns in the same sets of compartments in different groups of cells. Histochem. Cell Biol. 122, 171–177 (2004).

    Article  CAS  Google Scholar 

  36. Wilhelm, S., Wagner, H. & Hacker, G. Activation of caspase-3-like enzymes in non-apoptotic T cells. Eur. J. Immunol. 28, 891–900 (1998).

    Article  CAS  Google Scholar 

  37. Alam, A., Cohen, L.Y., Aouad, S. & Sekaly, R.P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med. 190, 1879–1890 (1999).

    Article  CAS  Google Scholar 

  38. Mukerjee, N., McGinnis, K.M., Gnegy, M.E. & Wang, K.K. Caspase-mediated calcineurin activation contributes to IL-2 release during T cell activation. Biochem. Biophys. Res. Commun. 285, 1192–1199 (2001).

    Article  CAS  Google Scholar 

  39. Zermati, Y. et al. Caspase activation is required for terminal erythroid differentiation. J. Exp. Med. 193, 247–254 (2001).

    Article  CAS  Google Scholar 

  40. Kolbus, A. et al. Raf-1 antagonizes erythroid differentiation by restraining caspase activation. J. Exp. Med. 196, 1347–1353 (2002).

    Article  CAS  Google Scholar 

  41. Moretti, A. et al. Essential myosin light chain as a target for caspase-3 in failing myocardium. Proc. Natl. Acad. Sci. USA 99, 11860–11865 (2002).

    Article  CAS  Google Scholar 

  42. Newton, K. & Strasser, A. Caspases signal not only apoptosis but also antigen-induced activation in cells of the immune system. Genes Dev. 17, 819–825 (2003).

    Article  CAS  Google Scholar 

  43. Page, L.J., Sowerby, P.J., Lui, W.W. & Robinson, M.S. γ-synergin: an EH domain-containing protein that interacts with γ-adaptin. J. Cell Biol. 146, 993–1004 (1999).

    Article  CAS  Google Scholar 

  44. Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol. 149, 67–80 (2000).

    Article  CAS  Google Scholar 

  45. Salamero, J., Le Borgne, R., Saudrais, C., Goud, B. & Hoflack, B. Expression of major histocompatibility complex class II molecules in HeLa cells promotes the recruitment of AP-1 Golgi-specific assembly proteins on Golgi membranes. J. Biol. Chem. 271, 30318–30321 (1996).

    Article  CAS  Google Scholar 

  46. Mallard, F. et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J. Cell Biol. 143, 973–990 (1998).

    Article  CAS  Google Scholar 

  47. Meyer, C. μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193–2203 (2000).

    Article  CAS  Google Scholar 

  48. Waguri, S. et al. Visualization of TGN to endosome trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol. Biol. Cell 14, 142–155 (2003).

    Article  CAS  Google Scholar 

  49. Corradin, S.B., Mauel, J., Donini, S.D., Quattrocchi, E. & Ricciardi-Castagnoli, P. Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia 7, 255–262 (1993).

    Article  CAS  Google Scholar 

  50. Raposo, G. & Kleijmeer, M.J. in Handbook of Experimental Immunology 5th edn. Ch. 208 (ed. Herzenberg, L.W., Herzenberg, L.A. and Blackwell, C.) 1–11 (I. Blackwell Science, Cambridge, Massachusetts, 1997).

    Google Scholar 

  51. Villadangos, J.A. et al. Proteases involved in MHC class II antigen presentation. Immunol. Rev. 172, 109–120 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.-L. Wong for assistance; J. Bonifacino for reviewing and criticizing the manuscript; and T.W. Mak for providing caspase 3–deficient mice. Supported by National Institutes of Health (AI49524 to J.L.S. and AI48832 to L.S.) and Irene Diamond Professorships in Immunology (L.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Santambrogio or Jack L Strominger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Analysis of AP-1 caspase 3 cleavage sites and caspase 3 activity in immature BMDC. (PDF 630 kb)

Supplementary Fig. 2

μ1 siRNA enhances surface Ii expression. (PDF 192 kb)

Supplementary Fig. 3

Decreased AP-1 and vesicle localization at the TGN in LPS and CI treated cells. (PDF 303 kb)

Supplementary Fig. 4

Diagram of the truncated AP-1 complex utilized in the transfection experiment reported in Figure 7. (PDF 104 kb)

Supplementary Fig. 5

Redistribution of endosome-associated AP-1 during DC maturation. (PDF 1447 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santambrogio, L., Potolicchio, I., Fessler, S. et al. Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells. Nat Immunol 6, 1020–1028 (2005). https://doi.org/10.1038/ni1250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing