Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD4-CD8 lineage commitment: an inside view

Abstract

The mechanism of CD4-CD8 lineage commitment, which ensures the correlation between T cell receptor specificity and adoption of the T killer or T helper phenotype, has long been the subject of intense debate. Various approaches are slowly elucidating the underlying molecular pathways. Analysis of the function of T cell receptor signaling (the 'top-down' approach) supports the view that differences in signal strength and/or duration 'instruct' alternative commitment. Analysis of the transcriptional regulation of the genes encoding CD4 and CD8 (the 'bottom-up' approach) has identified critical cis-acting elements and their interacting factors. Finally, identification of the transcription factor Th-POK as a central component of the CD4 lineage–determining pathway has provided a new starting point from which to unravel this intriguing process 'from the inside out'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thymocyte subset distribution and developmental pathways followed by MHC class I–restricted and MHC class II–restricted thymocytes in wild-type mice.
Figure 2: Instructive and stochastic-selective models of lineage commitment.
Figure 3: Inactivation or ectopic expression of Th-POK exerts opposing effects on lineage commitment.
Figure 4: Model of Th-POK-mediated control of lineage commitment.
Figure 5: Proposed functions of key molecules affecting CD4 and CD8 development.

Similar content being viewed by others

References

  1. Suzuki, H., Punt, J.A., Granger, L.G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Lucas, B. & Germain, R.N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Lundberg, K., Heath, W., Kontgen, F., Carbone, F.R. & Shortman, K. Intermediate steps in positive selection: differentiation of CD4+CD8intTCRint thymocytes into CD4−CD8+TCRhi thymocytes. J. Exp. Med. 181, 1643–1651 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Kydd, R., Lundberg, K., Vremec, D., Harris, A.W. & Shortman, K. Intermediate steps in thymic positive selection: generation of CD4−8+ T cells in culture from CD4+8+,CD4INT8+, and CD4+8INT thymocytes with up-regulated levels of TCR-CD3. J. Immunol. 155, 3806–3814 (1995).

    CAS  PubMed  Google Scholar 

  5. Davis, C.B., Killeen, N., Crooks, M.E., Raulet, D. & Littman, D.R. Evidence for a stochastic mechanism in the differentiation of mature subsets of T lymphocytes. Cell 73, 237–247 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Chan, S.H., Cosgrove, D., Waltzinger, C., Benoist, C. & Mathis, D. Another view of the selective model of thymocyte selection. Cell 73, 225–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Baron, A., Hafen, K. & von Boehmer, H. A human CD4 transgene rescues CD4−CD8+ cells in 2-microglobulin-deficient mice. Eur. J. Immunol. 24, 1933–1936 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Itano, A., Kioussis, D. & Robey, E. Stochastic component to development of class I major histocompatibility complex-specific T cells. Proc. Natl. Acad. Sci. USA 91, 220–224 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robey, E.A. et al. Thymic selection in CD8 transgenic mice supports an instructive model for commitment to a CD4 or CD8 lineage. Cell 64, 99–107 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Borgulya, P., Kishi, H., Muller, U., Kirberg, J. & von, B.H. Development of the CD4 and CD8 lineage of T cells: instruction versus selection. EMBO J. 10, 913–918 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Germain, R.N. T-cell development and the CD4–CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Matechak, E.O., Killeen, N., Hedrick, S.M. & Fowlkes, B.J. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity 4, 337–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Veillette, A., Zúñiga-Pflücker, J.C., Bolen, J.B. & Kruisbeek, A.M. Engagement of CD4 and CD8 expressed on immature thymocytes induces activation of intracellular tyrosine phosphorylation pathways. J. Exp. Med. 170, 1671–1680 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Wiest, D.L. et al. Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules. J. Exp. Med. 178, 1701–1712 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Legname, G. et al. Inducible expression of a p56Lck transgene reveals a central role for Lck in the differentiation of CD4 SP thymocytes. Immunity 12, 537–546 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Hernandez-Hoyos, G., Sohn, S.J., Rothenberg, E.V. & Alberola-Ila, J. Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 12, 313–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Schmedt, C. et al. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature 394, 901–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Sharp, L.L., Schwarz, D.A., Bott, C.M., Marshall, C.J. & Hedrick, S.M. The influence of the MAPK pathway on T cell lineage commitment. Immunity 7, 609–618 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Bommhardt, U., Basson, M.A., Krummrei, U. & Zamoyska, R. Activation of the extracellular signal-related kinase/mitogen-activated protein kinase pathway discriminates CD4 versus CD8 lineage commitment in the thymus. J. Immunol. 163, 715–722 (1999).

    CAS  PubMed  Google Scholar 

  20. Alberola-Ila, J. & Hernández-Hoyos, G. The Ras/MAPK cascade and the control of positive selection. Immunol. Rev. 191, 79–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R.N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4–CD8 lineage differentiation in vivo. Nat. Immunol. 5, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+CD8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Chan, S., Correia-Neves, M., Dierich, A., Benoist, C. & Mathis, D. Visualization of CD4/CD8 T cell commitment. J. Exp. Med. 188, 2321–2333 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ellmeier, W., Sawada, S. & Littman, D.R. The regulation of CD4 and CD8 coreceptor gene expression during T cell development. Annu. Rev. Immunol. 17, 523–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Hedrick, S.M. T cell development: bottoms-up. Immunity 16, 619–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Sawada, S., Scarborough, J.D., Killeen, N. & Littman, D.R. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77, 917–929 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Siu, G., Wurster, A.L., Duncan, D.D., Soliman, T.M. & Hedrick, S.M. A transcriptional silencer controls the developmental expression of the CD4. EMBO J. 13, 3570–3579 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zou, Y.R. et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet. 29, 332–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Taniuchi, I., Sunshine, M.J., Festenstein, R. & Littman, D.R. Evidence for distinct CD4 silencer functions at different stages of thymocyte differentiation. Mol. Cell 10, 1083–1096 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Hostert, A. et al. A region in the CD8 gene locus that directs expression to the mature CD8 T cell subset in transgenic mice. Immunity 7, 525–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Ellmeier, W., Sunshine, M.J., Losos, K., Hatam, F. & Littman, D.R. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 7, 537–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Ellmeier, W., Sunshine, M.J., Losos, K. & Littman, D.R. Multiple developmental stage-specific enhancers regulate CD8 expression in developing thymocytes and in thymus-independent T cells. Immunity 9, 485–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Hostert, A. et al. Hierarchical interactions of control elements determine CD8A gene expression in subsets of thymocytes and peripheral T cells. Immunity 9, 497–508 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Ellmeier, W., Sunshine, M.J., Maschek, R. & Littman, D.R. Combined deletion of CD8 locus cis-regulatory elements affects initiation but not maintenance of CD8 expression. Immunity 16, 623–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA 100, 7731–7736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ehlers, M. et al. Morpholino antisense oligonucleotide-mediated gene knockdown during thymocyte development reveals role for Runx3 transcription factor in CD4 silencing during development of CD4−CD8+ thymocytes. J. Immunol. 171, 3594–3604 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Telfer, J.C., Hedblom, E.E., Anderson, M.K., Laurent, M.N. & Rothenberg, E.V. Localization of the domains in Runx transcription factors required for the repression of CD4 in thymocytes. J. Immunol. 172, 4359–4370 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kitabayashi, I., Yokoyama, A., Shimizu, K. & Ohki, M. Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J. 17, 2994–3004 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Westendorf, J.J. et al. Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21CIP1/WAF1 promoter. Mol. Cell. Biol. 22, 7982–7992 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Levanon, D. et al. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc. Natl. Acad. Sci. USA 95, 11590–11595 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lutterbach, B. et al. A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J. Biol. Chem. 275, 651–656 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hayashi, K. et al. Overexpression of AML1 transcription factor drives thymocytes into the CD8 single-positive lineage. J. Immunol. 167, 4957–4965 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Kohu, K. et al. Overexpression of the Runx3 transcription factor increases the proportion of mature thymocytes of the CD8 single-positive lineage. J. Immunol. 174, 2627–2636 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Tyznik, A.J., Sun, J.C. & Bevan, M.J. The CD8 population in CD4-deficient mice is heavily contaminated with MHC class II-restricted T cells. J. Exp. Med. 199, 559–565 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chi, T.H. et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418, 195–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Chi, T.H. et al. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19, 169–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Brown, K.E., Baxter, J., Graf, D., Merkenschlager, M. & Fisher, A.G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell 3, 207–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Merkenschlager, M., Amoils, S., Roldan, E. & Rahemtulla, A., O'connor, E., Fisher, A.G. & Brown, K.E. Centromeric repositioning of coreceptor loci predicts their stable silencing and the CD4/CD8 lineage choice. J. Exp. Med. 200, 1437–1444 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Delaire, S., Huang, Y.H., Chan, S.W. & Robey, E.A. Dynamic repositioning of CD4 and CD8 genes during T cell development. J. Exp. Med. 200, 1427–1435 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cobb, B.S. et al. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev. 14, 2146–2160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harker, N. et al. The CD8α gene locus is regulated by the Ikaros family of proteins. Mol. Cell 10, 1403–1415 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Brown K.E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Kim, J. et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10, 345–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Dave, V.P., Allman, D., Keefe, R., Hardy, R.R. & Kappes, D.J. HD mice: a novel mouse mutant with a specific defect in the generation of CD4+ T cells. Proc. Natl. Acad. Sci. USA 95, 8187–8192 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Keefe, R., Dave, V., Allman, D., Wiest, D. & Kappes, D.J. Regulation of lineage commitment distinct from positive selection. Science 286, 1149–1153 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Hashimoto, K. et al. Requirement for p56lck tyrosine kinase activation in T cell receptor-mediated thymic selection. J. Exp. Med. 184, 931–943 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Hernandez-Hoyos, G., Anderson, M.K., Wang, C., Rothenberg, E.V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Bhandoola, A., Kithiganahalli, B., Granger, L. & Singer, A. Programming for cytotoxic effector function occurs concomitantly with CD4 extinction during CD8+ T cell differentiation in the thymus. Int. Immunol. 12, 1035–1040 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Melnick, A. et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol. Cell. Biol. 22, 1804–1818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Galera, P., Musso, M., Ducy, P. & Karsenty, G. c-Krox, a transcriptional regulator of type I collagen gene expression, is preferentially expressed in skin. Proc. Natl. Acad. Sci. USA 91, 9372–9376 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Widom, R.L., Culic, I., Lee, J.Y. & Korn, J.H. Cloning and characterization of hcKrox, a transcriptional regulator of extracellular matrix gene expression. Gene 198, 407–420 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Nawijn, M.C. et al. Enforced expression of GATA-3 during T cell development inhibits maturation of CD8 single-positive cells and induces thymic lymphoma in transgenic mice. J. Immunol. 167, 715–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Komine, O. et al. The Runx1 transcription factor inhibits the differentiation of naive CD4+ T cells into the Th2 lineage by repressing GATA3 expression. J. Exp. Med. 198, 51–61 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Fowlkes, B.J. & Robey, E.A. A reassessment of the effect of activated Notch1 on CD4 and CD8 T cell development. J. Immunol. 169, 1817–1821 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Wilkinson, B. et al. TOX: an HMG box protein implicated in the regulation of thymocyte selection. Nat. Immunol. 3, 272–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Aliahmad, P. et al. TOX provides a link between calcineurin activation and CD8 lineage commitment. J. Exp. Med. 199, 1089–1099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Robey, E.A. & Bluestone, J.A. Notch signaling in lymphocyte development and function. Curr. Opin. Immunol. 16, 360–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Wolfer, A. et al. Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8T cell development. Nat. Immunol. 2, 235–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Tanigaki, K. et al. Regulation of αβ/gγδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the colleagues whose work could not be cited because of space constraints. Supported by the National Institutes of Health (D.J.K.) and the Commonwealth of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar J Kappes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappes, D., He, X. & He, X. CD4-CD8 lineage commitment: an inside view. Nat Immunol 6, 761–766 (2005). https://doi.org/10.1038/ni1230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing