Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonstimulatory peptides contribute to antigen-induced CD8–T cell receptor interaction at the immunological synapse

Abstract

It is unclear if the interaction between CD8 and the T cell receptor (TCR)–CD3 complex is constitutive or antigen induced. Here, fluorescence resonance energy transfer microscopy between fluorescent chimeras of CD3ζ and CD8β showed that this interaction was induced by antigen recognition in the immunological synapse. Nonstimulatory endogenous or exogenous peptides presented simultaneously with antigenic peptides increased the CD8-TCR interaction. This finding indicates that the interaction between the intracellular regions of a TCR-CD3 complex recognizing its cognate peptide–major histocompatibility complex (MHC) antigen, and CD8 (plus the kinase Lck), is enhanced by a noncognate CD8-MHC interaction. Thus, the interaction of CD8 with a nonstimulatory peptide-MHC complex helps mediate T cell recognition of antigen, improving the coreceptor function of CD8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function of fluorescent chimeric proteins.
Figure 2: T cell–APC conjugate formation and CD3ζ and CD8β recruitment to the synapse.
Figure 3: CD8 clustering to the synapse is MHC driven, whereas CD3ζ clustering is antigen driven.
Figure 4: Agonist peptide induces colocalization and interaction between CD8β-YFP and CD3ζ-CFP.
Figure 5: Close molecular proximity of CD8β and CD3ζ can be induced by pMHC molecules alone.
Figure 6: Nonstimulatory peptides increase antigen-induced interaction between CD8 and TCR.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Davis, M.M. et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–534 (1998).

    Article  CAS  Google Scholar 

  2. Gascoigne, N.R.J., Zal, T. & Alam, S.M. T-cell receptor binding kinetics in T-cell development and activation. Exp. Rev. Mol. Med. [online] (http://www.expertreviews.org/01002502h.htm) (2001).

  3. Zamoyska, R. CD4 and CD8: Modulators of T-cell receptor recognition of antigen and of immune responses? Curr. Opin. Immunol. 10, 82–87 (1998).

    Article  CAS  Google Scholar 

  4. Potter, T.A., Rajan, T.V., Dick, R.F., II & Bluestone, J.A. Substitution at residue 227 of H-2 class I molecules abrogates recognition by CD8-dependent, but not CD8-independent, cytotoxic T lymphocytes. Nature 337, 73–75 (1989).

    Article  CAS  Google Scholar 

  5. Madrenas, J., Chau, L.A., Smith, J., Bluestone, J.A. & Germain, R.N. The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide-MHC molecule ligands. J. Exp. Med. 185, 219–229 (1997).

    Article  CAS  Google Scholar 

  6. Wyer, J.R. et al. T cell receptor and coreceptor CD8αα bind peptide-MHC independently and with distinct kinetics. Immunity 10, 219–225 (1999).

    Article  CAS  Google Scholar 

  7. Arcaro, A. et al. CD8β endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56lck complexes. J. Exp. Med. 194, 1485–1495 (2001).

    Article  CAS  Google Scholar 

  8. Xiong, Y., Kern, P., Chang, H-C. & Reinherz, E.L. T cell receptor binding to a pMHCII ligand is kinetically distinct from and independent of CD4. J. Biol. Chem. 276, 5659–5667 (2001).

    Article  CAS  Google Scholar 

  9. Gascoigne, N.R.J. & Zal, T. Molecular interactions at the T cell-antigen-presenting cell interface. Curr. Opin. Immunol. 16, 114–119 (2004).

    Article  CAS  Google Scholar 

  10. Gallagher, P.F., Fazekas de St Groth, B. & Miller, J.F.A.P. CD4 and CD8 molecules can physically associate with the same T-cell receptor. Proc. Natl. Acad. Sci. USA 86, 10044–10048 (1989).

    Article  CAS  Google Scholar 

  11. Beyers, A.D., Spruyt, L.L. & Williams, A.F. Molecular associations between the T-lymphocyte antigen receptor complex and the surface antigens CD2, CD4, or CD8 and CD5. Proc. Natl. Acad. Sci. USA 89, 2945–2949 (1992).

    Article  CAS  Google Scholar 

  12. Suzuki, S., Kupsch, J., Eichmann, K. & Saizawa, M.K. Biochemical evidence of the physical association of the majority of CD3 δ chains with the accessory/co-receptor molecules CD4 and CD8 on nonactivated T lymphocytes. Eur. J. Immunol. 22, 2475–2479 (1992).

    Article  CAS  Google Scholar 

  13. Doucey, M.A. et al. CD3δ establishes a functional link between the T cell receptor and CD8. J. Biol. Chem. 278, 3257–3264 (2003).

    Article  CAS  Google Scholar 

  14. Mittler, R.S., Goldman, S.J., Spitalny, G.L. & Burakoff, S.J. T-cell receptor-CD4 physical association in a murine T-cell hybridoma: Induction by physical antigen receptor ligation. Proc. Natl. Acad. Sci. USA 86, 8531–8535 (1989).

    Article  CAS  Google Scholar 

  15. Anel, A., Martinez-Lorenzo, M.J., Schmitt-Verhulst, A.M. & Boyer, C. Influence on CD8 of TCR/CD3-generated signals in CTL clones and CTL precursor cells. J. Immunol. 158, 19–28 (1997).

    CAS  PubMed  Google Scholar 

  16. Osono, E., Sato, N., Yokomuro, K. & Saizawa, M.K. Changes in arrangement and in conformation of molecular components of peripheral T-cell antigen receptor complex after ligand binding: analyses by co-precipitation profiles. Scand. J. Immunol. 45, 487–493 (1997).

    Article  CAS  Google Scholar 

  17. Block, M.S., Johnson, A.J., Mendez-Fernandez, Y. & Pease, L.R. Monomeric class I molecules mediate TCR/CD3ε/CD8 interaction on the surface of T cells. J. Immunol. 167, 821–826 (2001).

    Article  CAS  Google Scholar 

  18. Takada, S. & Engleman, E.G. Evidence for an association between CD8 molecules and the T cell receptor complex on cytotoxic T cells. J. Immunol. 139, 3231–3235 (1987).

    CAS  PubMed  Google Scholar 

  19. Anderson, P., Blue, M-L., Schlossman, S.F. & Comodulation of CD3 and CD4 Evidence for a specific association between CD4 and approximately 5% of the CD3:T cell receptor complexes on helper T lymphocytes. J. Immunol. 140, 1732–1737 (1988).

    CAS  PubMed  Google Scholar 

  20. Rojo, J.M., Saizawa, K. & Janeway, C.A., Jr. Physical association of CD4 and the T-cell receptor can be induced by anti-T-cell receptor antibodies. Proc. Natl. Acad. Sci. USA 86, 3311–3315 (1989).

    Article  CAS  Google Scholar 

  21. Kwan Lim, G.E., McNeill, L., Whitley, K., Becker, D.L. & Zamoyska, R. Co-capping studies reveal CD8/TCR interactions after capping CD8β polypeptides and intracellular associations of CD8 with p56lck. Eur. J. Immunol. 28, 745–754 (1998).

    Article  CAS  Google Scholar 

  22. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  Google Scholar 

  23. Xavier, R., Brennan, T., Li, Q.Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    Article  CAS  Google Scholar 

  24. Bromley, S.K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  Google Scholar 

  25. Krummel, M.F., Sjaastad, M.D., Wülfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  Google Scholar 

  26. Zal, T., Zal, M.A. & Gascoigne, N.R.J. Inhibition of T-cell receptor-coreceptor interactions by antagonist ligands visualized by live FRET imaging of the T-hybridoma immunological synapse. Immunity 16, 521–534 (2002).

    Article  CAS  Google Scholar 

  27. Purbhoo, M.A., Irvine, D.J., Huppa, J.B. & Davis, M.M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

    Article  CAS  Google Scholar 

  28. Potter, T.A., Grebe, K., Freiberg, B. & Kupfer, A. Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc. Natl. Acad. Sci. USA 98, 12624–12629 (2001).

    Article  CAS  Google Scholar 

  29. Revy, P., Sospedra, M., Barbour, B. & Trautmann, A. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol. 2, 925–931 (2001).

    Article  CAS  Google Scholar 

  30. Wulfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42–47 (2002).

    Article  CAS  Google Scholar 

  31. Krogsgaard, M. et al. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005).

    Article  CAS  Google Scholar 

  32. Zal, T. & Gascoigne, N.R.J. Using live FRET imaging to reveal early protein-protein interactions during T cell activation. Curr. Opin. Immunol. 16, 418–427 (2004).

    Article  CAS  Google Scholar 

  33. Alam, S.M. et al. T cell receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

    Article  CAS  Google Scholar 

  34. Stotz, S.H., Bolliger, L., Carbone, F.R. & Palmer, E. T cell receptor (TCR) antagonism without a negative signal: Evidence from T cell hybridomas expressing two independent TCRs. J. Exp. Med. 189, 253–263 (1999).

    Article  CAS  Google Scholar 

  35. Gorman, S.D., Sun, Y.H., Zamoyska, R. & Parnes, J.R. Molecular linkage of the Ly-3 and Ly-2 genes. Requirement of Ly-2 for Ly-3 surface expression. J. Immunol. 140, 3646–3653 (1988).

    CAS  Google Scholar 

  36. Holmberg, K., Mariathasan, S., Ohteki, T., Ohashi, P.S. & Gascoigne, N.R.J. TCR binding kinetics measured with MHC class I tetramers reveal a positive selecting peptide with relatively high affinity for TCR. J. Immunol. 171, 2427–2434 (2003).

    Article  CAS  Google Scholar 

  37. Monks, C.R.F., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  38. Zal, T. & Gascoigne, N.R.J. Photobleaching-corrected FRET efficiency imaging of live cells. Biophys. J. 86, 3923–3939 (2004).

    Article  CAS  Google Scholar 

  39. Freiberg, B.A. et al. Staging and resetting T cell activation in SMACs. Nat. Immunol. 3, 911–917 (2002).

    Article  CAS  Google Scholar 

  40. Porgador, A., Yewdell, J.W., Deng, Y., Bennink, J.R. & Germain, R.N. Localization, quantitation, and in situ detection of specific peptide–MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726 (1997).

    Article  CAS  Google Scholar 

  41. Santori, F.R. et al. Rare, structurally homologous self-peptides promote thymocyte positive selection. Immunity 17, 131–142 (2002).

    Article  CAS  Google Scholar 

  42. Kupfer, A., Singer, S.J., Janeway, C.A., Jr & Swain, S.L. Coclustering of CD4 (L3T4) molecule with the T cell receptor is induced by specific direct interaction of helper T cells and antigen-presenting cells. Proc. Natl. Acad. Sci. USA 84, 5888–5892 (1987).

    Article  CAS  Google Scholar 

  43. O'Rourke, A.M., Rogers, J. & Mescher, M.F. Activated CD8 binding to class I protein mediated by the T cell receptor results in signalling. Nature 346, 187–189 (1990).

    Article  CAS  Google Scholar 

  44. Sporri, R. & Reis e Sousa, C. Self peptide/MHC class I complexes have a negligible effect on the response of some CD8+ T cells to foreign antigen. Eur. J. Immunol. 32, 3161–3170 (2002).

    Article  CAS  Google Scholar 

  45. van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).

    Article  CAS  Google Scholar 

  46. Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article  CAS  Google Scholar 

  47. Li, Q.J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, 791–799 (2004).

    Article  CAS  Google Scholar 

  48. Ljunggren, H.G. et al. Empty MHC class I molecules come out in the cold. Nature 346, 476–480 (1990).

    Article  CAS  Google Scholar 

  49. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Jameson (University of Minnesota, Minnesota) for the collection of endogenous H-2Kb-binding peptides; E. Palmer, R. Germain, G. Nolan and J. Altman for reagents; and W. Havran, L. Sherman and C. Lotz for critical reading of the manuscript. Supported by the National Institutes of Health (GM065230, DK61329 and GM039476 to N.R.J.G. and T32 AI07290 to T.Z.) and Scripps NeuroAIDS Preclinical Studies (P30MH62261). This is manuscript 16479-IMM from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas R J Gascoigne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Example cells for CD3ζ and CD8β recruitment to the synapse. (PDF 1233 kb)

Supplementary Fig. 2

CD8c lustering to the synapse is MHC - driven. (PDF 199 kb)

Supplementary Fig. 3

Endogenous non-stimulatory peptides increase antigen - induced interaction between CD8 and TCR, T-APC conjugate formation, and TCR endocytosis. (PDF 943 kb)

Supplementary Methods (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yachi, P., Ampudia, J., Gascoigne, N. et al. Nonstimulatory peptides contribute to antigen-induced CD8–T cell receptor interaction at the immunological synapse. Nat Immunol 6, 785–792 (2005). https://doi.org/10.1038/ni1220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing