Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21

This article has been updated

Abstract

Notch receptors are processed by γ-secretase acting in synergy with T cell receptor signaling to sustain peripheral T cell activation. Activated CD4+ T cells differentiate into T helper type 1 (TH1) or TH2 subsets. Molecular cues directing TH1 differentiation include expression of the TH1-specific transcription factor T-bet, encoded by Tbx21. However, the regulation of Tbx21 remains incompletely defined. Here we report that Notch1 can directly regulate Tbx21 through complexes formed on the Tbx21 promoter. In vitro, γ-secretase inhibitors extinguished expression of Notch, interferon-γ and Tbx21 in TH1-polarized CD4+ cells, whereas ectopic expression of activated Notch1 restored Tbx21 transcription. In vivo, administration of γ-secretase inhibitors substantially impeded TH1-mediated disease progression in the mouse experimental autoimmune encephalomyelitis model of multiple sclerosis. Thus, using γ-secretase inhibitors to modulate Notch signaling may prove beneficial in treating TH1-mediated autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blocking Notch signaling decreases the capacity of CD4+ T cells to adopt a TH1 cell fate without affecting proliferation.
Figure 2: Preventing Notch activation early during polarization abrogates IFN-γ production and expression of Notch1 and phospho-STAT4.
Figure 3: Tbx21 mRNA expression is abrogated by 48 h in the absence of Notch signaling and Tbx21 mRNA is re-expressed after expression of activated Notch1.
Figure 4: CSL binds constitutively to putative consensus sites in the Tbx21 promoter and forms a complex with activated Notch1.
Figure 5: GSI treatment ameliorates symptoms of EAE and inhibits in vivo biological responses.

Similar content being viewed by others

Change history

  • 06 July 2018

    This article was initially published with an incorrect DOI. A new DOI has been assigned and registered at Crossref, and has been corrected in the article.

References

  1. Baron, M. An overview of the Notch signaling pathway. Semin. Cell Dev. Biol. 14, 113–119 (2003).

    CAS  PubMed  Google Scholar 

  2. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    CAS  PubMed  Google Scholar 

  3. Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo . Cell 93, 649–660 (1998).

    CAS  PubMed  Google Scholar 

  4. Kopan, R. & Ilagan, M.X. γ-secretase: proteasome of the membrane? Nat. Rev. Mol. Cell Biol. 5, 499–504 (2004).

    CAS  PubMed  Google Scholar 

  5. Radtke, F., Wilson, A., Mancini, S.J.C. & MacDonald, R. Notch regulation of lymphocyte development and function. Nat. Immunol. 5, 247–253 (2004).

    CAS  PubMed  Google Scholar 

  6. Adler, S.H. et al. Notch signaling augments T cell responsiveness by enhancing CD25 expression. J. Immunol. 171, 2896–2903 (2003).

    CAS  PubMed  Google Scholar 

  7. Palaga, T., Miele, L., Golde, T.E. & Osborne, B.A. TCR-mediated Notch signaling regulates proliferation and IFN-γ production in peripheral T cells. J. Immunol. 171, 3019–3024 (2003).

    CAS  PubMed  Google Scholar 

  8. Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    CAS  PubMed  Google Scholar 

  9. Maekawa, Y. et al. Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19, 549–559 (2003).

    CAS  PubMed  Google Scholar 

  10. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    CAS  PubMed  Google Scholar 

  11. Szabo, S. et al. A novel transcription factor, t-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  12. Szabo, S. et al. Distinct effects of T-bet in Th1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    CAS  PubMed  Google Scholar 

  13. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat. Immunol. 3, 549–557 (2001).

    Google Scholar 

  14. Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    CAS  PubMed  Google Scholar 

  15. Gavrilescu, L.C., Butcher, B.A., Del Rio, L., Taylor, G.A. & Denkers, E.Y. STAT1 is essential for antimicrobial effector function but dispensable for γ interferon production during Toxoplasma gondii infection. Infect. Immun. 72, 1257–1264 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lovett-Racke, A.E. et al. Silencing t-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21, 719–731 (2004).

    CAS  PubMed  Google Scholar 

  17. Bettelli, E. et al. Loss of t-bet but not STAT1 prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dal Canto, M.C., Melvold, R.V., Kim, B.S. & Miller, S.D. Two models of multiple sclerosis: experimental allergic encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus (TMEV) infection. A pathological and immunological comparison. Microsc. Res. Tech. 32, 215–229 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng, P. et al. Notch-1 regulates NF-κB activity in hemopoietic progenitor cells. J. Immunol. 167, 4458–4467 (2001).

    CAS  PubMed  Google Scholar 

  21. Tacchini-Cottier, F., Allenbach, C., Otten, L.A. & Radtke, F. Notch1 expression is not required for CD4+ T helper differentiation. Eur. J. Immunol. 34, 1588–1596 (2004).

    CAS  PubMed  Google Scholar 

  22. Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    CAS  PubMed  Google Scholar 

  23. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    CAS  PubMed  Google Scholar 

  24. Mullen, A.C. et al. Cell cycle controlling the silencing and functioning of mammalian activators. Curr. Biol. 11, 1695–1699 (2001).

    CAS  PubMed  Google Scholar 

  25. Seki, N. et al. IL-4-induced GATA-3 expression is a time-restricted instruction switch for Th2 cell differentiation. J. Immunol. 172, 6158–6166 (2004).

    CAS  PubMed  Google Scholar 

  26. Shuai, K. & Liu, B. Regulation of JAK-STAT signaling in the immune system. Nat. Rev. Immunol. 3, 900–911 (2003).

    CAS  PubMed  Google Scholar 

  27. Sekimoto, T., Nakajima, K., Tachibana, T., Hirano, T. & Yoneda, Y. Interferon-γ-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4. J. Biol. Chem. 271, 31017–31020 (1996).

    CAS  PubMed  Google Scholar 

  28. Thierfelder, W.E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174 (1996).

    CAS  PubMed  Google Scholar 

  29. Kaplan, M.H., Sun, Y.L., Hoey, T. & Grusby, M.J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    CAS  PubMed  Google Scholar 

  30. Takeda, K. et al. Essential role of Stat6 in IL-4 signaling. Nature 380, 627–630 (1996).

    CAS  PubMed  Google Scholar 

  31. Deftos, M.L., He, Y.-W., Ojala, E.W. & Bevan, M.J. Correlating Notch signaling with thymocyte maturation. Immunity 9, 777–786 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lammich, S. et al. Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Aβ-like peptide. J. Biol. Chem. 277, 44754–44759 (2002).

    CAS  PubMed  Google Scholar 

  33. Zhou, S. & Hayward, D. Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex. Mol. Cell. Biol. 21, 6222–6232 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nam, Y., Weng, A.P., Aster, J.C. & Blacklow, S.C. Structural requirements for assembly of the CSL-intracellular Notch1-Mastermind-like1 transcriptional activation complex. J. Biol. Chem. 278, 21232–21239 (2003).

    CAS  PubMed  Google Scholar 

  35. Weinmann, A.S. Novel ChIP-based strategies to uncover transcription factor target genes in the immune system. Nat. Rev. Immunol. 4, 381–386 (2004).

    CAS  PubMed  Google Scholar 

  36. Barth, H. et al. Analysis of immunoregulatory T-helper cell subsets in patients with multiple sclerosis: relapsing-progressive course correlates with enhanced Th1, relapsing-remitting course with enhanced Th0 reactivity. J. Neuroimmunol. 133, 175–183 (2002).

    CAS  PubMed  Google Scholar 

  37. Parronchi, P. et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am. J. Pathol. 150, 823–832 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hartung, A.D. et al. Th-2 mediated atopic disease protection in Th1-mediated rheumatoid arthritis. Clin. Exp. Rheumatol. 21, 481–484 (2003).

    CAS  PubMed  Google Scholar 

  39. Larche, M., Robinson, D.S. & Kay, A.B. The role of T lymphocytes in the pathogenesis of asthma. J. Allergy Clin. Immunol. 111, 450–463 (2003).

    CAS  PubMed  Google Scholar 

  40. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    CAS  PubMed  Google Scholar 

  41. Zhang, Z. et al. Presenilins are required for γ-secretase cleavage of β-APP and transmembrane cleavage of Notch-1. Nat. Cell Biol. 2, 463–465 (2000).

    CAS  PubMed  Google Scholar 

  42. Berezovska, O. et al. Notch1 and amyloid precursor protein are competitive substrates for presenilin1-dependent gamma-secretase cleavage. J. Biol. Chem. 276, 30018–30023 (2001).

    CAS  PubMed  Google Scholar 

  43. Kipnis, A., Basaraba, R.J., Turner, J. & Orme, I.M. Increased neutrophil influx but no impairment of protective immunity to tuberclosis in mice lacking the CD44 molecule. J. Leukoc. Biol. 74, 992–997 (2003).

    CAS  PubMed  Google Scholar 

  44. Wong, K.K. et al. Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J. Clin. Invest. 112, 1741–1750 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mizutani, T., Taniguchi, Y., Aoki, T., Hashimoto, N. & Honjo, T. Conservation of the biochemical mechanisms of signal transduction among mammalian Notch family members. Proc. Natl. Acad. Sci. USA 98, 9026–9031 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Siemers, E. et al. Effect of LY450139, a functional γ-secretase inhibitor, on plasma and cerebrospinal fluid concentrations of A-β and cognitive functioning in patients with mild to moderate Alzheimer's disease. Neurology 62, A174 Abstract S17.001 (2004).

    Google Scholar 

  47. Lanz, T.A., Hosley, J.D., Adams, W.J. & Merchant, K.M. Studies of Aβ pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the gamma-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575). J. Pharmacol. Exp. Ther. 309, 49–55 (2004).

    CAS  PubMed  Google Scholar 

  48. Anderson, G., Pongracz, J., Parnell, S. & Jenkinson, E.J. Notch ligand-bearing thymic epithelial cells initiate and sustain Notch signaling in thymocytes independently of T cell receptor signaling. Eur. J. Immunol. 31, 3349–3354 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Osborne Lab for discussions and R.A. Goldsby for critical reading of the manuscript. Supported by a Ruth L. Kirschstein National Research Service Award (L.M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A Osborne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

GSI abrogates IFN-γ secretion but CD44 expression and its affinity for ligand is unaffected.

Supplementary Fig. 2

Retroviral infection efficiencies of CD4+ T cells are comparable in DMSO- and GSI-pretreated cells, regardless of polarizing conditions.

Supplementary Fig. 3

Putative CSL binding sites are located in the murine Tbx21 promoter region.

Supplementary Fig. 4

Oral GSI treatment during EAE induction with PLP139-151 decreases ex vivo proliferation and IFN-γ production upon restimulation with peptide.

Supplementary Methods

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minter, L., Turley, D., Das, P. et al. Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6, 680–688 (2005). https://doi.org/10.1038/ni1209x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1209x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing