Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD14 is required for MyD88-independent LPS signaling

Abstract

The recessive mutation 'Heedless' (hdl) was detected in third-generation N-ethyl-N-nitrosourea–mutated mice that showed defective responses to microbial inducers. Macrophages from Heedless homozygotes signaled by the MyD88-dependent pathway in response to rough lipopolysaccharide (LPS) and lipid A, but not in response to smooth LPS. In addition, the Heedless mutation prevented TRAM-TRIF–dependent signaling in response to all LPS chemotypes. Heedless also abolished macrophage responses to vesicular stomatitis virus and substantially inhibited responses to specific ligands for the Toll-like receptor 2 (TLR2)-TLR6 heterodimer. The Heedless phenotype was positionally ascribed to a premature stop codon in Cd14. Our data suggest that the TLR4–MD-2 complex distinguishes LPS chemotypes, but CD14 nullifies this distinction. Thus, the TLR4–MD-2 complex receptor can function in two separate modes: one in which full signaling occurs and one limited to MyD88-dependent signaling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rough LPS and TLR2-6 specificity of the Heedless mutation.
Figure 2: Heedless prevents IFN-β induction by LPS.
Figure 3: Macrophages of Heedless mice are hypersensitive to cytolysis induced by VSV.
Figure 4: Detection of Heedless, a mutation in Cd14, by restriction endonuclease cleavage.
Figure 5: Rescue of smooth LPS responsiveness in Cd14 homozygous mutant cells by recombinant mouse CD14.

Similar content being viewed by others

References

  1. O'Brien, A.D. et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124, 20–24 (1980).

    CAS  PubMed  Google Scholar 

  2. Rosenstreich, D.L., Weinblatt, A.C. & O'Brien, A.D. Genetic control of resistance to infection in mice. CRC Crit. Rev. Immunol. 3, 263–330 (1982).

    CAS  Google Scholar 

  3. Galanos, C. et al. Endotoxic properties of chemically synthesized lipid A part structures. Comparison of synthetic lipid A precursor and synthetic analogues with biosynthetic lipid A precursor and free lipid A. Eur. J. Biochem. 140, 221–227 (1984).

    Article  CAS  Google Scholar 

  4. Galanos, C. et al. Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur. J. Biochem. 148, 1–5 (1985).

    Article  CAS  Google Scholar 

  5. Tobias, P.S., Mathison, J.C. & Ulevitch, R.J. A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis. J. Biol. Chem. 263, 13479–13481 (1988).

    CAS  PubMed  Google Scholar 

  6. Tobias, P.S., Soldau, K. & Ulevitch, R.J. Identification of a lipid A binding site in the acute phase reactant lipopolycaccharide binding protein. J. Biol. Chem. 264, 10867–10871 (1989).

    CAS  PubMed  Google Scholar 

  7. Schumann, R.R. et al. Structure and function of lipopolysaccharide binding protein. Science 249, 1429–1431 (1990).

    Article  CAS  Google Scholar 

  8. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J. & Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  CAS  Google Scholar 

  9. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  10. Nagai, Y. et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3, 667–672 (2002).

    Article  CAS  Google Scholar 

  11. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signaling. Nature 424, 743–748 (2003).

    Article  CAS  Google Scholar 

  12. Yamamoto, M. et al. Role of adapter Trif in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  13. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article  CAS  Google Scholar 

  14. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

    Article  CAS  Google Scholar 

  15. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  Google Scholar 

  16. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  CAS  Google Scholar 

  17. Horng, T., Barton, G.M., Flavell, R.A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333 (2002).

    Article  CAS  Google Scholar 

  18. Karaghiosoff, M. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat. Immunol. 4, 471–477 (2003).

    Article  CAS  Google Scholar 

  19. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005).

    Article  CAS  Google Scholar 

  20. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, A. & Beutler, B. Physical contact between LPS and Tlr4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97, 2163–2167 (2000).

    Article  CAS  Google Scholar 

  21. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    Article  CAS  Google Scholar 

  22. Lund, J.M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101, 5598–5603 (2004).

    Article  CAS  Google Scholar 

  23. Kim, J.I. et al. Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J. Biol. Chem. 280, 11347–11351 (2005).

    Article  CAS  Google Scholar 

  24. Jiang, Z., Mak, T.W., Sen, G. & Li, X. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-β. Proc. Natl. Acad. Sci. USA 101, 3533–3538 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (AI050241), the Landesstiftung (P-LS-AL/3) and the Deutsche Forschungsgemeinschaft (FR 448/4-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Beutler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The Heedless mutation, mapped and identified by sequencing. (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Georgel, P., Du, X. et al. CD14 is required for MyD88-independent LPS signaling. Nat Immunol 6, 565–570 (2005). https://doi.org/10.1038/ni1207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing