Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity

Abstract

Originally identified as a cell surface receptor that triggered the death of lymphocytes and tumor cells, it is now recognized that Fas (also known as CD95 or Apo-1) has distinct functions in the life and death of different cell types in the immune system. Fas signaling may also be involved in T cell costimulation and proliferation. Although Fas deficiency in humans and mice predisposes them towards systemic autoimmunity, Fas-FasL interactions can also facilitate organ-specific immunopathology. Proximal signaling by Fas and related receptors depends on subunit preassembly, which accounts for the dominant-negative effect of pathogenic receptor mutants and natural splice variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fas-FasL interactions mediate immune cell homeostasis.
Figure 2: Models for transmembrane signaling by Fas and related TNFR superfamily members.
Figure 3: Dominant interference in ALPS depends on the NH2-terminal PLAD.

Similar content being viewed by others

References

  1. Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Trauth, B. C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Naismith, J. H. & Sprang, S. R. Modularity in the TNF-receptor family. Trends Biochem. Sci. 23, 74–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Tartaglia, L. A., Ayres, T. M., Wong, G. H. & Goeddel, D. V. A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845–853 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Banner, D. W. et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka, M., Suda, T., Takahashi, T. & Nagata, S. Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J. 14, 1129–1135 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Screaton, G. R. et al. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc. Natl Acad. Sci. USA 94, 4615–4619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chinnaiyan, A. M. et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274, 990–992 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kitson, J. et al. A death-domain-containing receptor that mediates apoptosis. Nature 384, 372–375 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Schneider, P. et al. Characterization of two receptors for TRAIL. FEBS Lett. 416, 329–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Schneider, P. et al. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-κB. Immunity 7, 831–836 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Yeh, W. C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Pan, G. et al. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277, 815–818 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Walczak, H. et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16, 5386–5397 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan, G. et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett . 431, 351–356 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Golstein, P. Cell death: TRAIL and its receptors. Curr. Biol. 7, 750–753 (1997).

    Article  Google Scholar 

  20. Marsters, S. A. et al. Identification of a ligand for the death-domain-containing receptor Apo3. Curr. Biol. 8, 525–528 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Pitti, R. M. et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396, 699–703 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Sheridan, J. P. et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818–821 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Degli-Esposti, M. A. et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med. 186, 1165–1170 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marsters, S. A. et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr. Biol. 7, 1003–1006 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Feldman, M., Taylor, P., Paleolog, E., Brennan, F. M. & Maini, R. N. Anti-TNF α therapy is useful in rheumatoid arthritis and Crohn's disease: analysis of the mechanism of action predicts utility in other diseases. Transplant. Proc. 30, 4126–4127 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kischkel, F. C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boldin, M. P. et al. A novel protein that interacts with the death domain of Fas-Apo-1 contains a sequence motif related to the death doman. J. Biol. Chem. 270, 7795–7798 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Chinnaiyan, A. M., O'Rourke, K., Tewari, M. & Dixit, V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Eberstadt, M. et al. NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392, 941–945 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815 (1995).

    Article  Google Scholar 

  32. Nicholson, D. & Thornberry, N. Caspases: killer proteases. Trends Biochecm. Sci. 22, 299–306 (1997).

    Article  CAS  Google Scholar 

  33. Martin, D. A. et al. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc. Natl Acad. Sci. USA 96, 4552–4557 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, X., Chang, H. Y. & Baltimore, D. Autoproteolytic activation of pro-caspases by oligomerization. Mol. Cell 1, 319–325 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. & Dixit, V. M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926–2930 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Martin, D. A., Siegel, R. M., Zheng, L. & Lenardo, M. J. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHα1) death signal. J. Biol. Chem. 273, 4345–4349 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, J., Cado, D., Chen, A., Kabra, N. H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Varfolomeev, E. E. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO. J. 17, 1675–1687 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lenardo, M. J. et al. Autocrine feedback death and the regulation of mature T lymphocyte antigen responses. Int. Rev. Immunol. 13, 115–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Lenardo, M. et al. Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol 17, 221–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Ju, S. T. et al. Fas(CD95)/FasL interactions required for programmed cell death after T- cell activation. Nature 373, 444–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Dhein, J., Walczak, H., Baumler, C., Debatin, K. M. & Krammer, P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–441 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Peter, M. E. et al. Resistance of cultured peripheral T cells towards activation-induced cell death involves a lack of recruitment of FLICE (MACH/caspase 8) to the CD95 death-inducing signaling complex. Eur. J. Immunol. 27, 1207–1212 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Scaffidi, C., Schmitz, I., Krammer, P. H. & Peter, M. E. The role of c-FLIP in modulation of CD95-induced apoptosis. J. Biol. Chem 274, 1541–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Russell, J. H., White, C. L., Loh, D. Y. & Meleedy-Rey, P. Receptor-stimulated death pathway is opened by antigen in mature T cells. Proc. Natl Acad. Sci. USA 88, 2151–2155 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lenardo, M. J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature 353, 858–861 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Wong, B., Arron, J. & Choi, Y. T cell receptor signals enhance susceptibility to Fas-mediated apoptosis. J. Exp. Med. 186, 1939–1944 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hornung, F., Zheng, L. & Lenardo, M. J. Maintenance of clonotype specificity in CD95/Apo-1/Fas-mediated apoptosis of mature T lymphocytes. J. Immunol. 159, 3816–3822 (1997).

    CAS  PubMed  Google Scholar 

  52. Combadiere, B. et al. Qualitative and quantitative contributions of the T cell receptor zeta chain to mature T cell apoptosis. J. Exp. Med. 183, 2109–2117 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Combadiere, B., e Sousa, C. R., Germain, R. N. & Lenardo, M. J. Selective induction of apoptosis in mature T lymphocytes by variant T cell receptor ligands. J. Exp. Med. 187, 349–355 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sarin, A., Conan-Cibotti, M. & Henkart, P. A. Cytotoxic effect of TNF and lymphotoxin on T lymphoblasts. J. Immunol. 155, 3716–3718 (1995).

    CAS  PubMed  Google Scholar 

  55. Zhang, X. et al. Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med. 185, 1837–1849 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Varadhachary, A. S., Perdow, S. N., Hu, C., Ramanarayanan, M. & Salgame, P. Differential ability of T cell subsets to undergo activation-induced cell death. Proc. Natl Acad. Sci. USA 94, 5778–5783 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boehme, S. A. & Lenardo, M. J. Propriocidal apoptosis of mature T lymphocytes occurs at S phase of the cell cycle. Eur. J. Immunol. 23, 1552–1560 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Inaba, M. et al. Primed T cells are more resistant to Fas-mediated activation-induced cell death than naive T cells. J. Immunol. 163, 1315–1320 (1999).

    CAS  PubMed  Google Scholar 

  59. Desbarats, J., Wade, T., Wade, W. F. & Newell, M. K. Dichotomy between naive and memory CD4(+) T cell responses to Fas engagement. Proc. Natl Acad. Sci. USA 96, 8104–8109 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Parijs, L., Peterson, D. A. & Abbas, A. K. The Fas/Fas ligand pathway and Bcl-2 regulate T cell responses to model self and foreign antigens. Immunity 8, 265–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Kuroda, K. et al. Implantation of IL-2-containing osmotic pump prolongs the survival of superantigen-reactive T cells expanded in mice injected with bacterial superantigen. J. Immunol. 157, 1422–1431 (1996).

    CAS  PubMed  Google Scholar 

  62. Goodnow, C. C. et al. Self-tolerance checkpoints in B lymphocyte development. Adv. Immunol. 59, 279–368 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Rathmell, J. C., Townsend, S. E., Xu, J. C., Flavell, R. A. & Goodnow, C. C. Expansion or elimination of B cells in vivo: dual roles for CD40- and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell 87, 319–329 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Rothstein, T. L. et al. Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 374, 163–165 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Foote, L. C. et al. Intracellular signaling for inducible antigen receptor-mediated Fas resistance in B cells. J. Immunol. 157, 1878–1885 (1996).

    CAS  PubMed  Google Scholar 

  66. Wang, J. et al. Inhibition of Fas-mediated apoptosis by the B cell antigen receptor through c-FLIP. Eur. J. Immunol. 30, 155–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Wu, Y. et al. Tumor Necrosis Factor Receptor Superfamily Member TACI is a High Affinity Receptor for TNF Family Members APRIL and BLyS. J. Biol. Chem. 275, 35478–35485 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Marsters, S. A. et al. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr. Biol. 10, 785–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Xia, X. Z. et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med. 192, 137–143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thompson, J. S. et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J. Exp. Med. 192, 129–135 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kiener, P. A. et al. Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages. J. Exp. Med. 185, 1511–1516 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kikuchi, H. et al. Monocytic differentiation modulates apoptotic response to cytotoxic anti-Fas antibody and tumor necrosis factor α in human monoblast U937 cells. J. Leukoc. Biol. 60, 778–783 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Perlman, H. et al. FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis. J. Exp. Med. 190, 1679–1688 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koppi, T. A., Tough-Bement, T., Lewinsohn, D. M., Lynch, D. H. & Alderson, M. R. CD40 ligand inhibits Fas/CD95-mediated apoptosis of human blood-derived dendritic cells. Eur. J. Immunol. 27, 3161–3165 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Ingulli, E., Mondino, A., Khoruts, A. & Jenkins, M. K. In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J. Exp. Med. 185, 2133–2141 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, J. et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R. & Ferguson, T. A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377, 630–632 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Restifo, N. P. Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape. Nature Med. 6, 493–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Zaks, T. Z., Chappell, D. B., Rosenberg, S. A. & Restifo, N. P. Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. J. Immunol. 162, 3273–3279 (1999).

    CAS  PubMed  Google Scholar 

  82. Wahlsten, J. L., Gitchell, H. L., Chan, C., Wiggert, B. & Caspi, R. R. Fas and FasL expressed on cells of the immune system, not on the target tissue, control induction of experimental autoimmune uveitis. J. Immunol. 165, 5480–5486 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, J. J., Sun, Y. & Nabel, G. J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282, 1714–1717 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Kang, S. M. et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med. 3, 738–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Allison, J. Georgian, H. M., Strasser, A. & Vaux, D. L. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc. Natl Acad. Sci. USA 94, 3943–3947 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alderson, M. R. et al. Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med. 178, 2231–2235 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Kennedy, N. J., Kataoka, T., Tschopp, J. & Budd, R. C. Caspase activation is required for T cell proliferation. J. Exp. Med. 190, 1891–1896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alam, A., Cohen, L. Y., Aouad, S. & Sekaly, R. P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med. 190, 1879–1890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signaling pathways. Curr. Biol. 10, 640–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Chu, J. L., Drappa, J., Parnassa, A. & Elkon, K. B. The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn. J. Exp. Med. 178, 723–730 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. Lynch, D. H. et al. The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1, 131–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Fisher, G. H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Rieux-Laucat, F. et al. Mutations in Fas-associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1351 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Straus, S. E., Sneller, M., Lenardo, M. J., Puck, J. M. & Strober, W. An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann. Intern. Med. 130, 591–601 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Sneller, M. C. et al. A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J. Clin. Invest. 90, 334–341 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sneller, M. C. et al. Clincial, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 89, 1341–1348 (1997).

    CAS  PubMed  Google Scholar 

  98. Cohen, P. L. & Eisenberg, R. A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Vidal, S., Kono, D. H. & Theofilopoulos, A. N. Loci predisposing to autoimmunity in MRL-Fas lpr and C57BL/6-Faslpr mice. J. Clin. Invest. 101, 696–702 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Itoh, N. et al. Requirement of Fas for the development of autoimmune diabetes in nonobese diabetic mice. J. Exp. Med. 186, 613–618 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, S. et al. Inhibition of autoimmune diabetes by Fas ligand: the paradox is solved. J. Immunol. 164, 2931–2936 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Su, X. et al. Significant role for Fas in the pathogenesis of autoimmune diabetes. J. Immunol. 164, 2523–2532 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Dittel, B. N., Merchant, R. M. & Janeway, C. A., Jr. Evidence for Fas-dependent and Fas-independent mechanisms in the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 162, 6392–6400 (1999).

    CAS  PubMed  Google Scholar 

  104. Okuda, Y., Bernard, C. C., Fujimura, H., Yanagihara, T. & Sakoda, S. Fas has a crucial role in the progression of experimental autoimmune encephalomyelitis. Mol. Immunol. 35, 317–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Sabelko-Downes, K. A., Cross, A. H. & Russell, J. H. Dual role for Fas ligand in the initiation of and recovery from experimental allergic encephalomyelitis. J. Exp. Med. 189, 1195–1205 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Suvannavejh, G. C., Dal Canto, M. C., Matis, L. A. & Miller, S. D. Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis. J. Clin. Invest. 105, 223–231 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Critchfield, J. M. et al. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263, 1139–1143 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Jackson, C. et al. Autoimmune lymphoproliferative syndrome with defective Fas: Genotype influences penetrance. Am. J. Hum. Genet. 64, 1002–1014 (1998).

    Article  Google Scholar 

  109. Vaishnaw, A. K. et al. The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations J. Clin. Invest. 103, 355–363 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. McWhirter, S. M. et al. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc. Natl Acad. Sci. USA 96, 8408–8413 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Wallach, D. et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17, 331–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Chan, F. K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Siegel, R. M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Papoff, G. et al. Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J. Biol. Chem. 274, 38241–38250 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Matis and J. Tschopp for suggestions and discussion. F. K. –M. C. is a fellow of the Cancer Research Institute and H. J. C. is a Howard Hughes Medical Institute–NIH Research Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lenardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, R., Ka-Ming Chan, F., Chun, H. et al. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1, 469–474 (2000). https://doi.org/10.1038/82712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/82712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing