Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self

Abstract

Naturally arising CD25+CD4+ regulatory T cells actively maintain immunological self-tolerance. Deficiency in or dysfunction of these cells can be a cause of autoimmune disease. A reduction in their number or function can also elicit tumor immunity, whereas their antigen-specific population expansion can establish transplantation tolerance. They are therefore a good target for designing ways to induce or abrogate immunological tolerance to self and non-self antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linkage of central and peripheral tolerance by thymic production of natural CD25+CD4+ Treg cells that contribute to peripheral self-tolerance.
Figure 2: Control of Treg cell–associated molecules in natural Treg cells.
Figure 3: Induction of tolerance to organ grafts through in vivo or ex vivo antigen-specific population expansion of Treg cells.

Similar content being viewed by others

References

  1. Shevach, E.M. Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Maloy, K.J. & Powrie, F. Regulatory T cells in the control of immune pathology. Nat. Immunol. 2, 816–822 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Coutinho, A. et al. Regulatory T cells: the physiology of autoreactivity in dominant tolerance and “quality control” of immune responses. Immunol. Rev. 182, 89–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Baecher-Allan, C. & Hafler, D.A. Suppressor T cells in human diseases. J. Exp. Med. 200, 273–276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakaguchi, S. et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  7. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi, S., Fukuma, K., Kuribayashi, K. & Masuda, T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J. Exp. Med. 161, 72–87 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Powrie, F. & Mason, D. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J. Exp. Med. 172, 1701–1708 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. McKeever, U. et al. Adoptive transfer of autoimmune diabetes and thyroiditis to athymic rats. Proc. Natl. Acad. Sci. USA 87, 7618–7622 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  15. Suri-Payer, E., Amar, A.Z., Thornton, A.M. & Shevach, E.M. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  16. Singh, B. et al. Control of intestinal inflammation by regulatory T cells. Immunol. Rev. 182, 190–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Fontenot, J.D. & Rudensky, A. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6, 331–337 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Gambineri, E., Torgerson, T.R. & Ochs, H.D. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Brunkow, M.E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Chatila, T.A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wildin, R.S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Bennett, C.L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Tommasini, A. et al. X-chromosome inactivation analysis in a female carrier of FOXP3 mutation. Clin. Exp. Immunol. 130, 127–130 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horak, I., Lohler, J., Ma, A. & Smith, K.A. Interleukin-2 deficient mice: a new model to study autoimmunity and self-tolerance. Immunol. Rev. 148, 35–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Kramer, S., Schimpl, A. & Hunig, T. Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J. Exp. Med. 182, 1769–1776 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Willerford, D.M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 268, 1472–1476 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Klebb, G. et al. Interleukin-2 is indispensable for development of immunological self-tolerance. Clin. Immunol. Immunopathol. 81, 282–286 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Wolf, M., Schimpl, A. & Hunig, T. Control of T cell hyperactivation in IL-2-deficient mice by CD4+CD25- and CD4+CD25+ T cells: evidence for two distinct regulatory mechanisms. Eur. J. Immunol. 31, 1637–1645 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Almeida, A.R., Legrand, N., Papiernik, M. & Freitas, A.A. Homeostasis of peripheral CD4+ T cells: IL-2Rα and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J. Immunol. 169, 4850–4860 (2002).

    Article  PubMed  Google Scholar 

  31. Malek, T.R. et al. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Murakami, M. et al. CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc. Natl. Acad. Sci. USA 99, 8832–8837 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. A crucial role of IL-2 in the homeostatic maintenance of CD25+CD4+ regulatory T cells: induction of autoimmune disease by neutralization of IL-2. J. Exp. Med. (in the press).

  34. Furtado, G.C., Curotto de Lafaille, M.A., Kutchukhidze, N. & Lafaille, J.J. Interleukin 2 signaling is required for CD4+ regulatory T cell function. J. Exp. Med. 196, 851–857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thornton, A.M., Donovan, E.E., Piccirillo, C.A. & Shevach, E.M. Cutting edge: IL-2 Is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol. 172, 6519–6523 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Chastagner, P. et al. Lack of intermediate-affinity interleukin-2 receptor in mice leads to dependence on interleukin-2 receptor α, β and γ chain expression for T cell growth. Eur. J. Immunol. 26, 201–206 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Nelson, B.H. & Willerford, D.M. Biology of the interleukin-2 receptor. Adv. Immunol. 70, 1–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, Y. et al. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Nishimura, E. et al. Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells. Int. Immunol. 16, 1189–1201 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Yagi, H. et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int. Immunol. 16, 1643–1656 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Stephens, L.A. & Mason, D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25 subpopulations. J. Immunol. 165, 3105–3110 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. von Boehmer, H. Mechanisms of suppression by suppressor T cells. Nat. Immunol. 6, 338–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bachmann, M.F. et al. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol. 163, 1128–1131 (1999).

    CAS  PubMed  Google Scholar 

  48. Tang, Q. et al. Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2996–3005 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Manzotti, C.N. et al. Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur. J. Immunol. 32, 2888–2896 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206–1212 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Munn, D.H., Sharma, M.D. & Mellor, A.L. Ligation of B7–1/B7–2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172, 4100–4110 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Paust, S., Lu, L., McCarty, N. & Cantor, H. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc. Natl. Acad. Sci. USA 101, 10398–10403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fehervari, Z. & Sakaguchi, S. Control of Foxp3+ CD25+CD4+ regulatory cell activation and function by dendritic cells. Int. Immunol. 16, 1769–1780 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Collins, A.V. et al. The interaction properties of costimulatory molecules revisited. Immunity 17, 201–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Zheng, Y. et al. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J. Immunol. 172, 2778–2784 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Shimizu, J. et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. McHugh, R.S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ronchetti, S., Nocentini, G., Riccardi, C. & Pandolfi, P.P. Role of GITR in activation response of T lymphocytes. Blood 100, 350–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Kanamaru, F. et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J. Immunol. 172, 7306–7314 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Stephens, G.L. et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J. Immunol. 173, 5008–5020 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Ji, H.B. et al. Cutting edge: the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J. Immunol. 172, 5823–5827 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Tone, M. et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc. Natl. Acad. Sci. USA 100, 15059–15064 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumanogoh, A. et al. Increased T cell autoreactivity in the absence of CD40–CD40 ligand interactions: a role of CD40 in regulatory T cell development. J. Immunol. 166, 353–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Serra, P. et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 19, 877–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Bour-Jordan, H. et al. Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J. Clin. Invest. 114, 979–987 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Pasare, C. & Medzhitov, R. Toll-dependent control mechanisms of CD4 T cell activation. Immunity 21, 733–741 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Caramalho, I. et al. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197, 403–411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med. 194, 629–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peng, Y. et al. TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc. Natl. Acad. Sci. USA 101, 4572–4577 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huber, S. et al. Cutting edge: TGF-β signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J. Immunol. 173, 6526–6531 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Thompson, C. & Powrie, F. Regulatory T cells. Curr. Opin. Pharmacol. 4, 408–414 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Hsieh, C.S. et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21, 267–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Reddy, J. et al. Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 101, 15434–15439 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nishikawa, H. et al. CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc. Natl. Acad. Sci. USA 100, 10902–10906 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA 100, 8886–8891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Walker, L.S. et al. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J. Exp. Med. 198, 249–258 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fisson, S. et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 198, 737–746 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ginsberg-Fellner, F. et al. Diabetes mellitus and autoimmunity in patients with the congenital rubella syndrome. Rev. Infect. Dis. 7, S170–S176 (1985).

    Article  PubMed  Google Scholar 

  84. Sullivan, K.E., McDonald-McGinn, D. & Zackai, E.H. CD4+ CD25+ T-cell production in healthy humans and in patients with thymic hypoplasia. Clin. Diagn. Lab. Immunol. 9, 1129–1131 (2002).

    PubMed  PubMed Central  Google Scholar 

  85. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Encinas, J.A. et al. QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing Il2. Nat. Genet. 21, 158–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Podolin, P.L. et al. Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12, 477–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Tang, Q. et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tarbell, K.V. et al. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. 199, 1467–1477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bach, J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–20 (2002).

    Article  PubMed  Google Scholar 

  91. Boon, T. et al. Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol. 12, 337–365 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Dunn, G.P., Old, L.J. & Schreiber, R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  94. Onizuka, S. et al. Tumor rejection by in vitro administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).

    CAS  PubMed  Google Scholar 

  95. Sutmuller, R.P. et al. J. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Golgher, D. et al. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur. J. Immunol. 32, 3267–3275 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Danke, N.A. et al. Autoreactive T cells in healthy individuals. J. Immunol. 172, 5967–5972 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Phan, G.Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoffmann, P. et al. Large-scale in vitro expansion of polyclonal human CD4+CD25high regulatory T cells. Blood 104, 895–903 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Godfrey, W.R. et al. In vitro-expanded human CD4+CD25+ T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 104, 453–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Wood, K.J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 3, 199–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Waldmann, H. et al. Regulatory T cells and organ transplantation. Semin. Immunol. 16, 119–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Aluvihare, V.R., Kallikourdis, M. & Betz, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. T\ivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  Google Scholar 

  106. Taguchi, O. & Takahashi, T. Administration of anti-interleukin-2 receptor α antibody in vivo induces localized autoimmune disease. Eur. J. Immunol. 26, 1608–1612 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. McHugh, R.S. & Shevach, E.M. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol. 168, 5979–5983 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Z. Fehervari for critically reading the manuscript. Supported by grants-in-aids from the Ministry of Education, Science, Sports and Culture; the Ministry of Human Welfare; Research Center for Allergy and Immunology; Institute for Physical and Chemical Research; and Core Research for Evolutional Science and Technology Program, Japan Science and Technology Agency, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Sakaguchi.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6, 345–352 (2005). https://doi.org/10.1038/ni1178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing