Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immune activation modulates hematopoiesis through interactions between CD27 and CD70

Abstract

The differentiation of hematopoietic stem cells into mature blood cell lineages is tightly regulated. Here we report that CD27, which is expressed on stem and early progenitor cells in bone marrow, can be important in this process. Deletion of CD27 increased the myeloid colony–forming potential of stem and early progenitor cells and enhanced B lymphoid reconstitutive capacity in competitive transplantation experiments. Conversely, stimulation of CD27+ progenitor cells with CD70, the unique ligand for CD27, inhibited colony-forming potential in vitro and lymphocyte outgrowth in vivo. As CD70 is expressed only on activated immune cells, we suggest that CD27 triggering on early progenitor cells provides a negative feedback signal to leukocyte differentiation during immune activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD27 expression on c-Kithi progenitor cells correlates with high colony-forming potential in vitro.
Figure 2: The absence of CD27 results in an increase in white blood cells in peripheral blood and increased myeloid colony–forming potential of bone marrow progenitor cells.
Figure 3: CD27-deficient LKS cells perform better in competitive transplantation assays than do wild-type LKS cells and give rise to more B cells.
Figure 4: In vitro differentiation in the presence of CD70-expressing cells inhibits the differentiation capacity of progenitor cells.
Figure 5: In vivo triggering of CD27 on progenitor cells with CD70 inhibits their differentiating capacity in vitro.
Figure 6: CD27 triggering hampers the repopulating ability of LKS cells in competitive transplantation assays.
Figure 7: CD27 triggering negatively influences B cell differentiation in vivo.

Similar content being viewed by others

References

  1. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  CAS  Google Scholar 

  2. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  Google Scholar 

  3. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  Google Scholar 

  4. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  Google Scholar 

  5. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  Google Scholar 

  6. Wiesmann, A. et al. Expression of CD27 on murine hematopoietic stem and progenitor cells. Immunity 12, 193–199 (2000).

    Article  CAS  Google Scholar 

  7. Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  Google Scholar 

  8. de Jong, R. et al. Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J. Immunol. 146, 2488–2494 (1991).

    CAS  PubMed  Google Scholar 

  9. van Lier, R.A. et al. Tissue distribution and biochemical and functional properties of Tp55 (CD27), a novel T cell differentiation antigen. J. Immunol. 139, 1589–1596 (1987).

    CAS  PubMed  Google Scholar 

  10. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).

    Article  CAS  Google Scholar 

  11. Jacquot, S., Kobata, T., Iwata, S., Morimoto, C. & Schlossman, S.F. CD154/CD40 and CD70/CD27 interactions have different and sequential functions in T cell-dependent B cell responses: enhancement of plasma cell differentiation by CD27 signaling. J. Immunol. 159, 2652–2657 (1997).

    CAS  PubMed  Google Scholar 

  12. Kobata, T. et al. CD27–CD70 interactions regulate B-cell activation by T cells. Proc. Natl. Acad. Sci. USA 92, 11249–11253 (1995).

    Article  CAS  Google Scholar 

  13. Xiao, Y., Hendriks, J., Langerak, P., Jacobs, H. & Borst, J. CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. J. Immunol. 172, 7432–7441 (2004).

    Article  CAS  Google Scholar 

  14. Klein, U., Rajewsky, K. & Kuppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    Article  CAS  Google Scholar 

  15. Hintzen, R.Q. et al. Characterization of the human CD27 ligand, a novel member of the TNF gene family. J. Immunol. 152, 1762–1773 (1994).

    CAS  PubMed  Google Scholar 

  16. Bowman, M.R. et al. The cloning of CD70 and its identification as the ligand for CD27. J. Immunol. 152, 1756–1761 (1994).

    CAS  PubMed  Google Scholar 

  17. Lens, S.M., Baars, P.A., Hooibrink, B., van Oers, M.H. & van Lier, R.A. Antigen-presenting cell-derived signals determine expression levels of CD70 on primed T cells. Immunology 90, 38–45 (1997).

    Article  CAS  Google Scholar 

  18. Oshima, H. et al. Characterization of murine CD70 by molecular cloning and mAb. Int. Immunol. 10, 517–526 (1998).

    Article  CAS  Google Scholar 

  19. Akiba, H. et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J. Exp. Med. 191, 375–380 (2000).

    Article  CAS  Google Scholar 

  20. Tesselaar, K. et al. Expression of the murine CD27 ligand CD70 in vitro and in vivo. J. Immunol. 170, 33–40 (2003).

    Article  CAS  Google Scholar 

  21. Hintzen, R.Q. et al. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J. Immunol. 154, 2612–2623 (1995).

    CAS  PubMed  Google Scholar 

  22. Agematsu, K. et al. Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood 91, 173–180 (1998).

    CAS  PubMed  Google Scholar 

  23. Arens, R. et al. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNγ-mediated B cell depletion. Immunity 15, 801–812 (2001).

    Article  CAS  Google Scholar 

  24. Arens, R. et al. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation. J. Exp. Med. 199, 1595–1605 (2004).

    Article  CAS  Google Scholar 

  25. Hendriks, J. et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nat. Immunol. 1, 433–440 (2000).

    Article  CAS  Google Scholar 

  26. Hendriks, J., Xiao, Y. & Borst, J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J. Exp. Med. 198, 1369–1380 (2003).

    Article  CAS  Google Scholar 

  27. Ploemacher, R.E., van der Sluijs, J.P., van Beurden, C.A., Baert, M.R. & Chan, P.L. Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 78, 2527–2533 (1991).

    CAS  PubMed  Google Scholar 

  28. Ikuta, K. & Weissman, I.L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl. Acad. Sci. USA 89, 1502–1506 (1992).

    Article  CAS  Google Scholar 

  29. Orlic, D., Fischer, R., Nishikawa, S., Nienhuis, A.W. & Bodine, D.M. Purification and characterization of heterogeneous pluripotent hematopoietic stem cell populations expressing high levels of c-kit receptor. Blood 82, 762–770 (1993).

    CAS  PubMed  Google Scholar 

  30. Li, C.L. & Johnson, G.R. Murine hematopoietic stem and progenitor cells: I. Enrichment and biologic characterization. Blood 85, 1472–1479 (1995).

    CAS  PubMed  Google Scholar 

  31. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    Article  CAS  Google Scholar 

  32. Christensen, J.L. & Weissman, I.L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA 98, 14541–14546 (2001).

    Article  CAS  Google Scholar 

  33. Kerst, J.M., Slaper-Cortenbach, I.C., van dem Borne, A.E., van der Schoot, C.E. & van Oers, R.H. Combined measurement of growth and differentiation in suspension cultures of purified human CD34-positive cells enables a detailed analysis of myelopoiesis. Exp. Hematol. 20, 1188–1193 (1992).

    CAS  PubMed  Google Scholar 

  34. Lagasse, E. & Weissman, I.L. Flow cytometric identification of murine neutrophils and monocytes. J. Immunol. Methods 197, 139–150 (1996).

    Article  CAS  Google Scholar 

  35. Kouro, T., Medina, K.L., Oritani, K. & Kincade, P.W. Characteristics of early murine B-lymphocyte precursors and their direct sensitivity to negative regulators. Blood 97, 2708–2715 (2001).

    Article  CAS  Google Scholar 

  36. Akiba, H. et al. CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-κB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-κB-inducing kinase. J. Biol. Chem. 273, 13353–13358 (1998).

    Article  CAS  Google Scholar 

  37. Gravestein, L.A. et al. The TNF receptor family member CD27 signals to Jun N-terminal kinase via Traf-2. Eur. J. Immunol. 28, 2208–2216 (1998).

    Article  CAS  Google Scholar 

  38. Feuerer, M. et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat. Med. 9, 1151–1157 (2003).

    Article  CAS  Google Scholar 

  39. Slifka, M.K., Matloubian, M. & Ahmed, R. Bone marrow is a major site of long-term antibody production after acute viral infection. J. Virol. 69, 1895–1902 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McHeyzer-Williams, M.G. & Ahmed, R. B cell memory and the long-lived plasma cell. Curr. Opin. Immunol. 11, 172–179 (1999).

    Article  CAS  Google Scholar 

  41. Tarte, K., Zhan, F., De Vos, J., Klein, B. & Shaughnessy, J., Jr. Gene expression profiling of plasma cells and plasmablasts: toward a better understanding of the late stages of B-cell differentiation. Blood 102, 592–600 (2003).

    Article  CAS  Google Scholar 

  42. Nagumo, H. et al. CD27/CD70 interaction augments IgE secretion by promoting the differentiation of memory B cells into plasma cells. J. Immunol. 161, 6496–6502 (1998).

    CAS  PubMed  Google Scholar 

  43. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B.I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707–718 (2004).

    Article  CAS  Google Scholar 

  44. Zoumbos, N.C., Djeu, J.Y. & Young, N.S. Interferon is the suppressor of hematopoiesis generated by stimulated lymphocytes in vitro. J. Immunol. 133, 769–774 (1984).

    CAS  PubMed  Google Scholar 

  45. Young, H.A. et al. Bone marrow and thymus expression of interferon-gamma results in severe B-cell lineage reduction, T-cell lineage alterations, and hematopoietic progenitor deficiencies. Blood 89, 583–595 (1997).

    CAS  PubMed  Google Scholar 

  46. Bryder, D. et al. Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J. Exp. Med. 194, 941–952 (2001).

    Article  CAS  Google Scholar 

  47. Rebel, V.I. et al. Essential role for the p55 tumor necrosis factor receptor in regulating hematopoiesis at a stem cell level. J. Exp. Med. 190, 1493–1504 (1999).

    Article  CAS  Google Scholar 

  48. Ploemacher, R.E. Cobblestone area forming cell (CAFC) assay. in Culture of Hematopoietic Cells vol. 1 (eds. Freshney R.I., Pragnell, I.B., Freshney, M.G.) 1–21 (Wiley-Liss, New York, New York, 1994).

    Google Scholar 

  49. Fibbe, W.E. et al. Sustained engraftment of mice transplanted with IL-1-primed blood-derived stem cells. J. Immunol. 148, 417–421 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Hagoort and R. van Olffen for technical assistance; E. Nolte-'t Hoen (Imperial College London, London, UK), R. Mebius (VU Medical Center, Amsterdam, The Netherlands) and C. Reis e Sousa (Cancer Research UK, London, UK) for critical reading of the manuscript; and J. Borst (The Netherlands Cancer Institute, Amsterdam, The Netherlands) for providing CD27-deficient mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René A W van Lier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolte, M., Arens, R., van Os, R. et al. Immune activation modulates hematopoiesis through interactions between CD27 and CD70. Nat Immunol 6, 412–418 (2005). https://doi.org/10.1038/ni1174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing