Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition

Abstract

The energetic bases of T cell recognition are unclear. Here, we studied the 'energetic landscape' of peptide–major histocompatibility complex (pMHC) recognition by an immunodominant αβ T cell receptor (TCR). We quantified and evaluated the effect of natural and systematic substitutions in the complementarity-determining region (CDR) loops on ligand binding in the context of the structural detail of each component of the immunodominant TCR-pMHC complex. The CDR1 and CDR2 loops contributed minimal energy through direct recognition of the antigen and instead had a chief function in stabilizing the ligated CDR3 loops. The underlying energetic basis for recognition lay in the CDR3 loops. Therefore the energetic burden of the CDR loops in the TCR-pMHC interaction is variable among TCRs, reflecting the inherent adaptability of the TCR in ligating different ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding analysis of LC13 TCR Ala point mutants to FLR–HLA-B8 by surface plasmon resonance.
Figure 2: Effect of substitutions on the LC13–FLR–HLA-B8 interaction.
Figure 3: LC13 TCR residues that are essential for interaction with FLR–HLA-B8.
Figure 4: Natural variation in 'public' TCR sequences used in the HLA-B8-restricted, FLR-specific antiviral CD8+ T cell response.
Figure 5: The LC13 TCR and HLA-B8 hotspot.

Similar content being viewed by others

References

  1. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  CAS  Google Scholar 

  2. Garcia, K.C. et al. An αβ T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996).

    Article  CAS  Google Scholar 

  3. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  Google Scholar 

  4. Ding, Y.H., Baker, B.M., Garboczi, D.N., Biddison, W.E. & Wiley, D.C. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11, 45–56 (1999).

    Article  CAS  Google Scholar 

  5. Garcia, K.C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article  CAS  Google Scholar 

  6. Reinherz, E.L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

    Article  CAS  Google Scholar 

  7. Degano, M. et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).

    Article  CAS  Google Scholar 

  8. Hennecke, J., Carfi, A. & Wiley, D.C. Structure of a covalently stabilized complex of a human αβ T cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J. 19, 5611–5624 (2000).

    Article  CAS  Google Scholar 

  9. Reiser, J.B. et al. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat. Immunol. 1, 291–297 (2000).

    Article  CAS  Google Scholar 

  10. Reiser, J.B. et al. A T cell receptor CDR3β loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

    Article  CAS  Google Scholar 

  11. Reiser, J.B. et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 4, 241–247 (2003).

    Article  CAS  Google Scholar 

  12. Luz, J.G. et al. Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing Vβ interactions. J. Exp. Med. 195, 1175–1186 (2002).

    Article  CAS  Google Scholar 

  13. Kjer-Nielsen, L. et al. A structural basis for the selection of dominant αβ T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

    Article  CAS  Google Scholar 

  14. Stewart-Jones, G.B., McMichael, A.J., Bell, J.I., Stuart, D.I. & Jones, E.Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).

    Article  CAS  Google Scholar 

  15. Garcia, K.C., Teyton, L. & Wilson, I.A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    Article  CAS  Google Scholar 

  16. Hennecke, J. & Wiley, D.C. T cell receptor-MHC interactions up close. Cell 104, 1–4 (2001).

    Article  CAS  Google Scholar 

  17. Rudolph, M.G. & Wilson, I.A. The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 14, 52–65 (2002).

    Article  CAS  Google Scholar 

  18. van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).

    Article  CAS  Google Scholar 

  19. Willcox, B.E. et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10, 357–365 (1999).

    Article  CAS  Google Scholar 

  20. Krogsgaard, M. et al. Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Mol. Cell 12, 1367–1378 (2003).

    Article  CAS  Google Scholar 

  21. Boniface, J.J., Reich, Z., Lyons, D.S. & Davis, M.M. Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Proc. Natl. Acad. Sci. USA 96, 11446–11451 (1999).

    Article  CAS  Google Scholar 

  22. Kersh, G.J., Kersh, E.N., Fremont, D.H. & Allen, P.M. High- and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9, 817–826 (1998).

    Article  CAS  Google Scholar 

  23. Manning, T.C. et al. Alanine scanning mutagenesis of an αβ T cell receptor: mapping the energy of antigen recognition. Immunity 8, 413–425 (1998).

    Article  CAS  Google Scholar 

  24. Lee, P.U., Churchill, H.R., Daniels, M., Jameson, S.C. & Kranz, D.M. Role of 2CT cell receptor residues in the binding of self- and allo-major histocompatibility complexes. J. Exp. Med. 191, 1355–1364 (2000).

    Article  CAS  Google Scholar 

  25. Wu, L.C., Tuot, D.S., Lyons, D.S., Garcia, K.C. & Davis, M.M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418, 552–556 (2002).

    Article  CAS  Google Scholar 

  26. Baker, B.M., Turner, R.V., Gagnon, S.J., Wiley, D.C. & Biddison, W.E. Identification of a crucial energetic footprint on the α1 helix of human histocompatibility leukocyte antigen (HLA)-A2 that provides functional interactions for recognition by tax peptide/HLA-A2-specific T cell receptors. J. Exp. Med. 193, 551–562 (2001).

    Article  CAS  Google Scholar 

  27. Arstila, T.P. et al. A direct estimate of the human αβ T cell receptor diversity. Science 286, 958–961 (1999).

    Article  CAS  Google Scholar 

  28. Argaet, V.P. et al. Dominant selection of an invariant T cell antigen receptor in response to persistent infection by Epstein-Barr virus. J. Exp. Med. 180, 2335–2340 (1994).

    Article  CAS  Google Scholar 

  29. Callan, M.F. et al. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat. Med. 2, 906–911 (1996).

    Article  CAS  Google Scholar 

  30. Annels, N.E., Callan, M.F., Tan, L. & Rickinson, A.B. Changing patterns of dominant TCR usage with maturation of an EBV-specific cytotoxic T cell response. J. Immunol. 165, 4831–4841 (2000).

    Article  CAS  Google Scholar 

  31. Kjer-Nielsen, L. et al. The structure of HLA-B8 complexed to an immunodominant viral determinant: peptide-induced conformational changes and a mode of MHC class I dimerization. J. Immunol. 169, 5153–5160 (2002).

    Article  Google Scholar 

  32. Kjer-Nielsen, L. et al. The 1.5 a crystal structure of a highly selected antiviral T cell receptor provides evidence for a structural basis of immunodominance. Structure (Camb) 10, 1521–1532 (2002).

    Article  CAS  Google Scholar 

  33. Webb, A.I. et al. The structure of H-2Kb and Kbm8 complexed to a herpes simplex virus determinant: evidence for a conformational switch that governs T cell repertoire selection and viral resistance. J. Immunol. 173, 402–409 (2004).

    Article  CAS  Google Scholar 

  34. Argaet, V.P. et al. Dominant selection of an invariant T cell antigen receptor in response to persistent infection by Epstein-Barr virus. J. Exp. Med. 180, 2335–2340 (1994).

    Article  CAS  Google Scholar 

  35. Callan, M.F. et al. T cell selection during the evolution of CD8+ T cell memory in vivo. Eur. J. Immunol. 28, 4382–4390 (1998).

    Article  CAS  Google Scholar 

  36. Manning, T.C., Parke, E.A., Teyton, L. & Kranz, D.M. Effects of complementarity determining region mutations on the affinity of an αβ T cell receptor: measuring the energy associated with CD4/CD8 repertoire skewing. J. Exp. Med. 189, 461–470 (1999).

    Article  CAS  Google Scholar 

  37. Speir, J.A. et al. Structural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Immunity 8, 553–562 (1998).

    Article  CAS  Google Scholar 

  38. Callan, M.F. & McMichael, A.J. T cell receptor usage in infectious disease. Springer Semin. Immunopathol. 21, 37–54 (1999).

    Article  CAS  Google Scholar 

  39. Callan, M.F. et al. T cell selection during the evolution of CD8+ T cell memory in vivo. Eur. J. Immunol. 28, 4382–4390 (1998).

    Article  CAS  Google Scholar 

  40. Callan, M.F. et al. CD8+ T-cell selection, function, and death in the primary immune response in vivo. J. Clin. Invest. 106, 1251–1261 (2000).

    Article  CAS  Google Scholar 

  41. Mongkolsapaya, J. et al. Antigen-specific expansion of cytotoxic T lymphocytes in acute measles virus infection. J. Virol. 73, 67–71 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Callan, M.F. et al. Selection of T cell receptor variable gene-encoded amino acids on the third binding site loop: a factor influencing variable chain selection in a T cell response. Eur. J. Immunol. 25, 1529–1534 (1995).

    Article  CAS  Google Scholar 

  43. Kedzierska, K., Turner, S.J. & Doherty, P.C. Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope. Proc. Natl. Acad. Sci. USA 101, 4942–4947 (2004).

    Article  CAS  Google Scholar 

  44. Wilson, J.D. et al. Oligoclonal expansions of CD8+ T cells in chronic HIV infection are antigen specific. J. Exp. Med. 188, 785–790 (1998).

    Article  CAS  Google Scholar 

  45. Clackson, T. & Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  CAS  Google Scholar 

  46. Wang, Z., Turner, R., Baker, B.M. & Biddison, W.E. MHC allele-specific molecular features determine peptide/HLA-A2 conformations that are recognized by HLA-A2-restricted T cell receptors. J. Immunol. 169, 3146–3154 (2002).

    Article  CAS  Google Scholar 

  47. Baxter, T.K. et al. Strategic mutations in the class I major histocompatibility complex HLA-A2 independently affect both peptide binding and T cell receptor recognition. J. Biol. Chem. 279, 29175–29184 (2004).

    Article  CAS  Google Scholar 

  48. Burrows, S.R., Khanna, R., Burrows, J.M. & Moss, D.J. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease. J. Exp. Med. 179, 1155–1161 (1994).

    Article  CAS  Google Scholar 

  49. Burrows, S.R. et al. Human leukocyte antigen phenotype imposes complex constraints on the antigen-specific cytotoxic T lymphocyte repertoire. Eur. J. Immunol. 27, 178–182 (1997).

    Article  CAS  Google Scholar 

  50. Zerrahn, J., Held, W. & Raulet, D.H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).

    Article  CAS  Google Scholar 

  51. Jameson, S.C., Kaye, J. & Gascoigne, N.R. A T cell receptor Vα region selectively expressed in CD4+ cells. J. Immunol. 145, 1324–1331 (1990).

    CAS  Google Scholar 

  52. Sim, B-C., Zerva, L., Greene, M.I. & Gascoigne, N.R.J. Control of MHC restriction by TcR Vα CDR1 and CDR2. Science 273, 963–966 (1996).

    Article  CAS  Google Scholar 

  53. Sim, B.C., Wung, J.L. & Gascoigne, N.R. Polymorphism within a TCRAV family influences the repertoire through class I/II restriction. J. Immunol. 160, 1204–1211 (1998).

    CAS  PubMed  Google Scholar 

  54. Sha, W.C. et al. Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice. Nature 335, 271–274 (1988).

    Article  CAS  Google Scholar 

  55. Garboczi, D.N. & Biddison, W.E. Shapes of MHC restriction. Immunity 10, 1–7 (1999).

    Article  CAS  Google Scholar 

  56. Patten, P.A. et al. The immunological evolution of catalysis. Science 271, 1086–1091 (1996).

    Article  CAS  Google Scholar 

  57. Clements, C.S. et al. The production, purification and crystallization of a soluble heterodimeric form of a highly selected T-cell receptor in its unliganded and liganded state. Acta Crystallogr. D Biol. Crystallogr. 58, 2131–2134 (2002).

    Article  Google Scholar 

  58. Parham, P., Barnstable, C.J. & Bodmer, W.F. Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C, antigens. J. Immunol. 123, 342–349 (1979).

    CAS  PubMed  Google Scholar 

  59. Panzara, M.A., Gussoni, E., Steinman, L. & Oksenberg, J.R. Analysis of the T cell repertoire using the PCR and specific oligonucleotide primers. Biotechniques 12, 728–735 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank F. Carbone and A. Brooks for critically reading the manuscript, and K. Davern (The Walter and Eliza Hall Institute of Medical Research) for assistance in producing the mAbs to LC13. Supported by a Wellcome Trust Senior Research Fellowship in Biomedical Science in Australia (J.R.), the University of Melbourne (A.W.P.), National Health and Medical Research Council (Australia) and Australian Research Council, the Roche Organ Transplantation Research Foundation and the Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James McCluskey or Jamie Rossjohn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Specificity of mAbs used to probe integrity of recombinant TCRs. (PDF 86 kb)

Supplementary Fig. 2

LC13 TCR and HLA-B8. (PDF 1514 kb)

Supplementary Fig. 3

Nucleotide and amino acid sequences of previously reported “public” TRBV7-8 chains(a) and TRAV26-2 chains(b) isolated from FLR-specifc CD8+ T cells (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borg, N., Ely, L., Beddoe, T. et al. The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition. Nat Immunol 6, 171–180 (2005). https://doi.org/10.1038/ni1155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing