Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA

Abstract

The livers of DNase II–deficient mouse embryos contain many macrophages carrying undigested DNA, and the embryos die in utero. Here we report that erythroid precursor cells underwent apoptosis in the livers of DNase II–deficient embryos and that in the liver, interferon-β mRNA was expressed by the resident macrophages. When the DNase II–deficient mice were crossed with mice deficient in type I interferon receptor, the resultant 'double-mutant' mice were born healthy. The double-mutant embryos expressed interferon-β mRNA, but the expression of a subset of the interferon-responsive genes dysregulated in DNase II–deficient embryos was restored to normal. These results indicate that the inability to degrade DNA derived from erythroid precursors results in interferon-β production that induces expression of a specific set of interferon-responsive genes associated with embryonic lethality in DNase II–deficient mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apoptotic cell death of fetal liver cells in Dnase2a−/− embryos.
Figure 2: Induction of interferon genes in the fetal liver of Dnase2a−/− mice.
Figure 3: Identification of interferon-producing cells in Dnase2a−/− fetal liver.
Figure 4: 'Rescue' of the embryonic lethality of DNase II deficiency by deficiency in IFN-β signaling.
Figure 5: Expression of interferon genes in Dnase2a−/−Ifnar1−/− fetal liver.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Palis, J. & Segel, G.B. Developmental biology of erythropoiesis. Blood Rev. 12, 106–114 (1998).

    Article  CAS  Google Scholar 

  2. Keller, G., Lacaud, G. & Robertson, S. Development of the hematopoietic system in the mouse. Exp. Hematol. 27, 777–787 (1999).

    Article  CAS  Google Scholar 

  3. Bernard, J. The erythroblastic island: past and future. Blood Cells 17, 5–10 (1991).

    CAS  PubMed  Google Scholar 

  4. Sasaki, K. & Iwatsuki, H. Origin and fate of the central macrophages of erythroblastic islands in the fetal and neonatal mouse liver. Microsc. Res. Tech. 39, 398–405 (1997).

    Article  CAS  Google Scholar 

  5. Bernardi, G. Spleen acid deoxyribonuclease. in The Enzymes vol. 3 (ed. Boyer, P.D.) 271–287 (Academic Press, New York and London, 1971).

    Google Scholar 

  6. Evans, C.J. & Aguilera, R.J. DNase II: genes, enzymes and function. Gene 322, 1–15 (2003).

    Article  CAS  Google Scholar 

  7. Yasuda, T. et al. Molecular cloning of the cDNA encoding human deoxyribonuclease II. J. Biol. Chem. 273, 2610–2616 (1998).

    Article  CAS  Google Scholar 

  8. Chou, S.F., Chen, H.L. & Lu, S.C. Up-regulation of human deoxyribonuclease II gene expression during myelomonocytic differentiation of HL-60 and THP-1 cells. Biochem. Biophys. Res. Commun. 296, 48–53 (2002).

    Article  CAS  Google Scholar 

  9. Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549 (2001).

    Article  CAS  Google Scholar 

  10. Krieser, R.J. et al. Deoxyribonuclease IIa is required during the phagocytic phase of apoptosis and its loss causes lethality. Cell Death Differ. 9, 956–962 (2002).

    Article  CAS  Google Scholar 

  11. Kina, T. et al. The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br. J. Haematol. 109, 280–287 (2000).

    Article  CAS  Google Scholar 

  12. Shifman, M.I. & Stein, D.G. A reliable and sensitive method for non-radioactive northern blot analysis of nerve growth factor mRNA from brain tissues. J. Neurosci. Methods 59, 205–208 (1995).

    Article  CAS  Google Scholar 

  13. Shaw, G.D. et al. Structure and expression of cloned murine IFN-α genes. Nucleic Acids Res. 11, 555–573 (1983).

    Article  CAS  Google Scholar 

  14. Nagata, S., Mantei, N. & Weissmann, C. The structure of one of the eight or more distinct chromosomal genes for human interferon-α. Nature 287, 401–408 (1980).

    Article  CAS  Google Scholar 

  15. Gresser, I., Tovey, M.G., Maury, C. & Chouroulinkov, I. Lethality of interferon preparations for newborn mice. Nature 258, 76–78 (1975).

    Article  CAS  Google Scholar 

  16. Gresser, I. et al. Electrophoretically pure mouse interferon inhibits growth, induces liver and kidney lesions, and kills suckling mice. Am. J. Pathol. 102, 396–402 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexander, W.S. et al. SOCS1 is a critical inhibitor of interferon-γ signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98, 597–608 (1999).

    Article  CAS  Google Scholar 

  18. Marine, J.C. et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616 (1999).

    Article  CAS  Google Scholar 

  19. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  20. Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  CAS  Google Scholar 

  21. Der, S.D., Zhou, A., Williams, B.R. & Silverman, R.H. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 15623–15628 (1998).

    Article  CAS  Google Scholar 

  22. Kawane, K. et al. Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat. Immunol. 4, 138–144 (2003).

    Article  CAS  Google Scholar 

  23. Sadahira, Y. & Mori, M. Role of the macrophage in erythropoiesis. Pathol. Int. 49, 841–848 (1999).

    Article  CAS  Google Scholar 

  24. Tanaka, M., Itai, T., Adachi, M. & Nagata, S. Down-regulation of Fas ligand by shedding. Nat. Med. 4, 31–36 (1998).

    Article  CAS  Google Scholar 

  25. Selleri, C., Maciejewski, J.P., Sato, T. & Young, N.S. Interferon-γ constitutively expressed in the stromal microenvironment of human marrow cultures mediates potent hematopoietic inhibition. Blood 87, 4149–4157 (1996).

    CAS  PubMed  Google Scholar 

  26. Pfeffer, L.M. et al. Biological properties of recombinant α-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 58, 2489–2499 (1998).

    CAS  PubMed  Google Scholar 

  27. Samuel, C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).

    Article  CAS  Google Scholar 

  28. Beutler, B. & Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169–176 (2003).

    Article  CAS  Google Scholar 

  29. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

    Article  CAS  Google Scholar 

  30. Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).

    Article  CAS  Google Scholar 

  31. Wakeland, E., Morel, L., Achey, K., Yui, M. & Longmate, J. Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol. Today 18, 472–477 (1997).

    Article  CAS  Google Scholar 

  32. Laird, P.W. et al. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19, 4293 (1991).

    Article  CAS  Google Scholar 

  33. Higashi, Y. et al. Structure and expression of a cloned cDNA for mouse interferon-β. J. Biol. Chem. 258, 9522–9529 (1983).

    CAS  PubMed  Google Scholar 

  34. Gray, P.W. & Goeddel, D.V. Cloning and expression of murine immune interferon cDNA. Proc. Natl. Acad. Sci. USA 80, 5842–5846 (1983).

    Article  CAS  Google Scholar 

  35. Sambrook, J. & Russell, D.W. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 2001).

    Google Scholar 

  36. Zhang, D. et al. An optimized system for studies of EPO-dependent murine pro-erythroblast development. Exp. Hematol. 29, 1278–1288 (2001).

    Article  CAS  Google Scholar 

  37. Austyn, J.M. & Gordon, S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur. J. Immunol. 11, 805–815 (1981).

    Article  CAS  Google Scholar 

  38. Carlow, D.A., Teh, S.J. & Teh, H.S. Specific antiviral activity demonstrated by TGTP, a member of a new family of interferon-induced GTPases. J. Immunol. 161, 2348–2355 (1998).

    CAS  PubMed  Google Scholar 

  39. Lee, C.G., Demarquoy, J., Jackson, M.J. & O'Brien, W.E. Molecular cloning and characterization of a murine LPS-inducible cDNA. J. Immunol. 152, 5758–5767 (1994).

    CAS  PubMed  Google Scholar 

  40. Rutherford, M.N., Kumar, A., Nissim, A., Chebath, J. & Williams, B.R. The murine 2–5A synthetase locus: three distinct transcripts from two linked genes. Nucleic Acids Res. 19, 1917–1924 (1991).

    Article  CAS  Google Scholar 

  41. Au, W.C., Moore, P.A., LaFleur, D.W., Tombal, B. & Pitha, P.M. Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes. J. Biol. Chem. 273, 29210–29217 (1998).

    Article  CAS  Google Scholar 

  42. Luster, A.D., Jhanwar, S.C., Chaganti, R.S., Kersey, J.H. & Ravetch, J.V. Interferon-inducible gene maps to a chromosomal band associated with a (4;11) translocation in acute leukemia cells. Proc. Natl. Acad. Sci. USA 84, 2868–2871 (1987).

    Article  CAS  Google Scholar 

  43. Meraro, D., Gleit-Kielmanowicz, M., Hauser, H. & Levi, B.Z. IFN-stimulated gene 15 is synergistically activated through interactions between the myelocyte/lymphocyte-specific transcription factors, PU.1, IFN regulatory factor-8/IFN consensus sequence binding protein, and IFN regulatory factor-4: characterization of a new subtype of IFN-stimulated response element. J. Immunol. 168, 6224–6231 (2002).

    Article  CAS  Google Scholar 

  44. Miyasaka, K., Hanayama, R., Tanaka, M. & Nagata, S. Expression of MFG-E8 in bone marrow-derived immature dendritic cells. Eur. J. Immunol. 34, 1414–1422 (2004).

    Article  CAS  Google Scholar 

  45. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  Google Scholar 

  46. McKnight, A.J. et al. Molecular cloning of F4/80, a murine macrophage-restricted cell surface glycoprotein with homology to the G-protein-linked transmembrane 7 hormone receptor family. J. Biol. Chem. 271, 486–489 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Miwa for genotyping the mice; and M. Fujii and M. Harayama for secretarial assistance. Supported by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigekazu Nagata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H., Okabe, Y., Kawane, K. et al. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat Immunol 6, 49–56 (2005). https://doi.org/10.1038/ni1146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing