Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amplification of IFN-α-induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors

Abstract

A key function of interferons is priming multiple cell types for enhanced activation by cytokines and inflammatory factors, including tumor necrosis factor, bacterial lipopolysaccharide and interferons themselves. Here we show that interferon-α (IFN-α)–induced activation of the transcriptional activator STAT1 and inflammatory STAT1 target genes was enhanced in IFN-γ-primed macrophages. Enhanced IFN-α signaling and proinflammatory function were dependent on the tyrosine kinase Syk and on adaptor proteins that activate Syk through immunoreceptor tyrosine activation motifs. Increased STAT1 expression contributed to enhanced IFN-α-induced STAT1 activation in primed macrophages. These results identify a mechanism by which crosstalk between cytokine and immune cell–specific immunoreceptor tyrosine activation motif–dependent signaling pathways regulates macrophage responses to IFN-α.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IFN-γ priming of macrophages increases IFN-α-induced STAT1 activation.
Figure 2: IFN-γ priming enhances IFN-α-induced chemokine expression and cell migration.
Figure 3: IFN-γ priming does not affect proximal IFN-α signaling.
Figure 4: Syk mediates increased phosphorylation of STAT1 and increased production of chemokines in IFN-γ primed macrophages.
Figure 5: Syk phosphorylation of STAT1 and FcRγ-DAP12 dependence of priming.
Figure 6: Increased STAT1 expression potentiates the priming effect of Syk.
Figure 7: Model for enhanced IFN-α STAT1 activation mediated by Syk, increased STAT1 expression and FcRγ and DAP12 adaptor proteins.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  2. Biron, C.A. Interferons α and β as immune regulators—a new look. Immunity 14, 661–664 (2001).

    Article  CAS  Google Scholar 

  3. Levy, D.E. & Darnell, J.E., Jr. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell. Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  4. Durbin, J.E., Hackenmiller, R., Simon, M.C. & Levy, D.E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article  CAS  Google Scholar 

  5. Meraz, M.A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442 (1996).

    Article  CAS  Google Scholar 

  6. Prejean, C. & Colamonici, O.R. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling. Semin. Cancer Biol. 10, 83–92 (2000).

    Article  CAS  Google Scholar 

  7. Kotenko, S.V. et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 4, 69–77 (2003).

    Article  CAS  Google Scholar 

  8. Sheppard, P. et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 4, 63–68 (2003).

    Article  CAS  Google Scholar 

  9. Fasler-Kan, E., Pansky, A., Wiederkehr, M., Battegay, M. & Heim, M.H. Interferon-α activates signal transducers and activators of transcription 5 and 6 in Daudi cells. Eur. J. Biochem. 254, 514–519 (1998).

    Article  CAS  Google Scholar 

  10. Jaster, R., Tschirch, E., Bittorf, T. & Brock, J. Role of STAT5 in interferon-α signal transduction in Ba/F3 cells. Cell Signal. 11, 331–335 (1999).

    Article  CAS  Google Scholar 

  11. Farrar, J.D., Smith, J.D., Murphy, T.L. & Murphy, K.M. Recruitment of Stat4 to the human interferon-α/β receptor requires activated Stat2. J. Biol. Chem. 275, 2693–2697 (2000).

    Article  CAS  Google Scholar 

  12. Taniguchi, T. & Takaoka, A. A weak signal for strong responses: interferon-α/β revisited. Nat. Rev. Mol. Cell. Biol. 2, 378–386 (2001).

    Article  CAS  Google Scholar 

  13. Marie, I., Durbin, J.E. & Levy, D.E. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J. 16, 6660–6669 (1998).

    Article  Google Scholar 

  14. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    Article  CAS  Google Scholar 

  15. Takaoka, A. et al. Cross talk between interferon-γ and -α/β signaling components in caveolar membrane domains. Science 288, 2357–2360 (2000).

    Article  CAS  Google Scholar 

  16. Mitani, Y. et al. Cross talk of the interferon-α/β signalling complex with gp130 for effective interleukin-6 signalling. Genes Cells 6, 631–640 (2001).

    Article  CAS  Google Scholar 

  17. Adams, D.O. & Hamilton, T.A. The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283–318 (1984).

    Article  CAS  Google Scholar 

  18. Schroder, K., Hertzog, P.J., Ravasi, T. & Hume, D.A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    Article  CAS  Google Scholar 

  19. Hu, X. et al. Sensitization of IFN-γ Jak-STAT signaling during macrophage activation. Nat. Immunol. 3, 859–866 (2002).

    Article  CAS  Google Scholar 

  20. Turner, M., Schweighoffer, E., Colucci, F., Di Santo, J.P. & Tybulewicz, V.L. Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol. Today 21, 148–154 (2000).

    Article  CAS  Google Scholar 

  21. Ravetch, J.V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    Article  CAS  Google Scholar 

  22. Mocsai, A. et al. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl. Acad. Sci. USA 101, 6158–6163 (2004).

    Article  CAS  Google Scholar 

  23. Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–763 (2004).

    Article  CAS  Google Scholar 

  24. Vines, C.M. et al. Inhibition of β2 integrin receptor and Syk kinase signaling in monocytes by the Src family kinase Fgr. Immunity 15, 507–519 (2001).

    Article  CAS  Google Scholar 

  25. Mocsai, A., Zhou, M., Meng, F., Tybulewicz, V.L. & Lowell, C.A. Syk is required for integrin signaling in neutrophils. Immunity 16, 547–558 (2002).

    Article  CAS  Google Scholar 

  26. Deckert, M., Tartare-Deckert, S., Couture, C., Mustelin, T. & Altman, A. Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product. Immunity 5, 591–604 (1996).

    Article  CAS  Google Scholar 

  27. Bulanova, E. et al. The IL-15R α chain signals through association with Syk in human B cells. J. Immunol. 167, 6292–6302 (2001).

    Article  CAS  Google Scholar 

  28. Zhou, Y.J. et al. Hierarchy of protein tyrosine kinases in interleukin-2 (IL-2) signaling: activation of Syk depends on Jak3; however, neither Syk nor Lck is required for IL-2-mediated STAT activation. Mol. Cell. Biol. 20, 4371–4380 (2000).

    Article  CAS  Google Scholar 

  29. Minami, Y. et al. Protein tyrosine kinase Syk is associated with and activated by the IL-2 receptor: possible link with the c-myc induction pathway. Immunity 2, 89–100 (1995).

    Article  CAS  Google Scholar 

  30. Levy, D.E., Kessler, D.S., Pine, R. & Darnell, J.E., Jr. Cytoplasmic activation of ISGF3, the positive regulator of interferon-α-stimulated transcription, reconstituted in vitro. Genes Dev. 3, 1362–1371 (1989).

    Article  CAS  Google Scholar 

  31. Li, X., Leung, S., Burns, C. & Stark, G.R. Cooperative binding of Stat1-2 heterodimers and ISGF3 to tandem DNA elements. Biochimie. 80, 703–710 (1998).

    Article  CAS  Google Scholar 

  32. Gil, M.P. et al. Biologic consequences of Stat1-independent IFN signaling. Proc. Natl. Acad. Sci. USA 98, 6680–6685 (2001).

    Article  CAS  Google Scholar 

  33. Ramana, C.V. et al. Stat1-independent regulation of gene expression in response to IFN-γ. Proc. Natl. Acad. Sci. USA 98, 6674–6679 (2001).

    Article  CAS  Google Scholar 

  34. Ivashkiv, L.B. Type I interferon modulation of cellular responses to cytokines and infectious pathogens: potential role in SLE pathogenesis. Autoimmunity 36, 473–479 (2003).

    Article  CAS  Google Scholar 

  35. Shimoda, K. et al. Tyk2 plays a restricted role in IFN α signaling, although it is required for IL-12-mediated T cell function. Immunity 13, 561–571 (2000).

    Article  CAS  Google Scholar 

  36. Karaghiosoff, M. et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13, 549–560 (2000).

    Article  CAS  Google Scholar 

  37. Karaghiosoff, M. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat. Immunol. 4, 471–477 (2003).

    Article  CAS  Google Scholar 

  38. Li, X., Leung, S., Kerr, I.M. & Stark, G.R. Functional subdomains of STAT2 required for preassociation with the α interferon receptor and for signaling. Mol. Cell. Biol. 17, 2048–2056 (1997).

    Article  CAS  Google Scholar 

  39. Leung, S., Qureshi, S.A., Kerr, I.M., Darnell, J.E., Jr. & Stark, G.R. Role of STAT2 in the α interferon signaling pathway. Mol. Cell. Biol. 15, 1312–1317 (1995).

    Article  CAS  Google Scholar 

  40. Farrar, J.D. et al. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse Stat2. Nat. Immunol. 1, 65–69 (2000).

    Article  CAS  Google Scholar 

  41. Park, C., Li, S., Cha, E. & Schindler, C. Immune response in Stat2 knockout mice. Immunity 13, 795–804 (2000).

    Article  CAS  Google Scholar 

  42. David, M., Chen, H.E., Goelz, S., Larner, A.C. & Neel, B.G. Differential regulation of the α/β interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol. 15, 7050–7058 (1995).

    Article  CAS  Google Scholar 

  43. Petricoin, E.F., 3rd et al. Antiproliferative action of interferon-α requires components of T-cell-receptor signalling. Nature 390, 629–632 (1997).

    Article  CAS  Google Scholar 

  44. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  Google Scholar 

  45. Nguyen, K.B. et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297, 2063–2066 (2002).

    Article  CAS  Google Scholar 

  46. Doyle, S.E. et al. Toll-like receptors induce a phagocytic gene program through p38. J. Exp. Med. 199, 81–90 (2004).

    Article  CAS  Google Scholar 

  47. Herrero, C. et al. Reprogramming of IL-10 activity and signaling by IFN-γ. J. Immunol. 171, 5034–5041 (2003).

    Article  CAS  Google Scholar 

  48. Sharif, N.M., Tassiulas, I., Hu, Y., Mecklenbraucker, I., Tarakhovsky, A. & Ivashkiv, L.B. IFN-α priming results in a gain of proinflammatory function by IL-10: implications for systemic lupus erythematosus pathogenesis. J. Immunol. 172, 6476–6481 (2004).

    Article  CAS  Google Scholar 

  49. Kasperkovitz, P.V. et al. Activation of the STAT1 pathway in rheumatoid arthritis. Ann. Rheum. Dis. 63, 233–239 (2004).

    Article  CAS  Google Scholar 

  50. van der Pouw Kraan, T.C. et al. Rheumatoid arthritis is a heterogeneous disease: evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum. 48, 2132–2145 (2003).

    Article  CAS  Google Scholar 

  51. Baechler, E.C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  Google Scholar 

  52. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  Google Scholar 

  53. Kuroiwa, T., Schlimgen, R., Illei, G.G. & Boumpas, D.T. Monocyte response to Th1 stimulation and effector function toward human mesangial cells are not impaired in patients with lupus nephritis. Clin. Immunol. 106, 65–72 (2003).

    Article  CAS  Google Scholar 

  54. Yasukawa, H., Sasaki, A. & Yoshimura, A. Negative regulation of cytokine signaling pathways. Annu. Rev. Immunol. 18, 143–164 (2000).

    Article  CAS  Google Scholar 

  55. Malakhova, O.A. et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 17, 455–460 (2003).

    Article  CAS  Google Scholar 

  56. Lee, I.H., Li, W.P., Hisert, K.B. & Ivashkiv, L.B. Inhibition of interleukin 2 signaling and signal transducer and activator of transcription (STAT)5 activation during T cell receptor-mediated feedback inhibition of T cell expansion. J. Exp. Med. 190, 1263–1274 (1999).

    Article  CAS  Google Scholar 

  57. Strobl, B. et al. A completely foreign receptor can mediate an interferon-γ-like response. EMBO J. 20, 5431–5442 (2001).

    Article  CAS  Google Scholar 

  58. Rubinson, D.A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Tybulewicz, M. Muller, G. Yap, C. Schindler and L. van Parijs for providing mice, bone marrow cells and plasmids; X. Ma and K. Park-Min for critically reviewing the manuscript; and M. Humphrey and M. Nakamura for discussions. Supported by the National Institutes of Health (L.B.I.), Abbott Scholar Program (I.T.) and Cancer Research Institute (X.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel B Ivashkiv.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tassiulas, I., Hu, X., Ho, H. et al. Amplification of IFN-α-induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors. Nat Immunol 5, 1181–1189 (2004). https://doi.org/10.1038/ni1126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing