Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity

Abstract

Interferon (IFN) activates the signal transducer and activator of transcription (STAT) pathway to regulate immune responses. The protein inhibitor of activated STAT (PIAS) family has been suggested to negatively regulate STAT signaling. To understand the physiological function of PIAS1, we generated Pias1−/− mice. Using PIAS1-deficient cells, we show that PIAS1 selectively regulates a subset of IFN-γ- or IFN-β-inducible genes by interfering with the recruitment of STAT1 to the gene promoter. The antiviral activity of IFN-γ or IFN-β was consistently enhanced by Pias1 disruption. Pias1−/− mice showed increased protection against pathogenic infection. Our data indicate that PIAS1 is a physiologically important negative regulator of STAT1 and suggest that PIAS1 is critical for the IFN-γ- or IFN-β-mediated innate immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Pias1−/− mice.
Figure 2: Analysis of gene activation by interferons in Pias1−/− and wild-type cells.
Figure 3: The differential affect of PIAS1 on the DNA-binding activity of STAT1 to GAS elements.
Figure 4: Chromatin immunoprecipitation assays of STAT1 target gene promoters.
Figure 5: Enhanced antiviral responses in Pias1−/− cells.
Figure 6: Enhanced antiviral and antibacterial activity in Pias1−/− mice.
Figure 7: Pias1−/− mice are hypersensitive to LPS-induced endotoxic shock.
Figure 8: PIAS1 in p53 signaling and protein sumoylation.

Similar content being viewed by others

References

  1. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  2. O'Shea, J.J., Gadina, M. & Schreiber, R.D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109 (suppl.), S121–131 (2002).

    Article  CAS  Google Scholar 

  3. Levy, D.E. & Darnell, J.E. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  4. Shuai, K. & Liu, B. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900–911 (2003).

    Article  CAS  Google Scholar 

  5. Alexander, W.S. Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2, 410–416 (2002).

    Article  CAS  Google Scholar 

  6. Hilton, D.J. Negative regulators of cytokine signal transduction. Cell. Mol. Life Sci. 55, 1568–1577 (1999).

    Article  CAS  Google Scholar 

  7. ten Hoeve, J. et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol. 22, 5662–5668 (2002).

    Article  CAS  Google Scholar 

  8. Liu, B. et al. Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. USA 95, 10626–10631 (1998).

    Article  CAS  Google Scholar 

  9. Chung, C.D. et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803–1805 (1997).

    Article  CAS  Google Scholar 

  10. Arora, T. et al. PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J. Biol. Chem. 278, 21327–21330 (2003).

    Article  CAS  Google Scholar 

  11. Liu, B., Gross, M., ten Hoeve, J. & Shuai, K. A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc. Natl. Acad. Sci. USA 98, 3203–3207 (2001).

    Article  CAS  Google Scholar 

  12. Gil, M.P. et al. Biologic consequences of Stat1-independent IFN signaling. Proc. Natl. Acad. Sci. USA 98, 6680–6685 (2001).

    Article  CAS  Google Scholar 

  13. Ramana, C.V. et al. Stat1-independent regulation of gene expression in response to IFN-γ. Proc. Natl. Acad. Sci. USA 98, 6674–6679 (2001).

    Article  CAS  Google Scholar 

  14. Ramana, C.V., Gil, M.P., Schreiber, R.D. & Stark, G.R. Stat1-dependent and -independent pathways in IFN-γ-dependent signaling. Trends Immunol. 23, 96–101 (2002).

    Article  CAS  Google Scholar 

  15. Maritano, D. et al. The STAT3 isoforms α and β have unique and specific functions. Nat. Immunol. 5, 401–409 (2004).

    Article  CAS  Google Scholar 

  16. Kojima, H., Nakajima, K. & Hirano, T. IL-6-inducible complexes on an IL-6 response element of the junB promoter contain Stat3 and 36 kDa CRE-like site binding protein(s). Oncogene 12, 547–554 (1996).

    CAS  PubMed  Google Scholar 

  17. Liu, K.D., Gaffen, S.L. & Goldsmith, M.A. JAK/STAT signaling by cytokine receptors. Curr. Opin. Immunol. 10, 271–278 (1998).

    Article  CAS  Google Scholar 

  18. Pine, R., Canova, A. & Schindler, C. Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFN α and IFN γ, and is likely to autoregulate the p91 gene. EMBO J. 13, 158–167 (1994).

    Article  CAS  Google Scholar 

  19. Decker, T., Lew, D.J., Mirkovitch, J. & Darnell, J.E., Jr. Cytoplasmic activation of GAF, an IFN-γ-regulated DNA-binding factor. EMBO J. 10, 927–932 (1991).

    Article  CAS  Google Scholar 

  20. Shuai, K., Schindler, C., Prezioso, V.R. & Darnell, J.E., Jr. Activation of transcription by IFN-γ: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258, 1808–1812 (1992).

    Article  CAS  Google Scholar 

  21. Guyer, N.B., Severns, C.W., Wong, P., Feghali, C.A. & Wright, T.M. IFN-γ induces a p91/Stat1 a-related transcription factor with distinct activation and binding properties. J. Immunol. 155, 3472–3480 (1995).

    CAS  PubMed  Google Scholar 

  22. Vinkemeier, U. et al. DNA binding of in vitro activated Stat1 a, Stat1 b and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J. 15, 5616–5626 (1996).

    Article  CAS  Google Scholar 

  23. Khan, K.D. et al. Induction of the Ly-6A/E gene by interferon α/β and γ requires a DNA element to which a tyrosine-phosphorylated 91-kDa protein binds. Proc. Natl. Acad. Sci. USA 90, 6806–6810 (1993).

    Article  CAS  Google Scholar 

  24. Wagner, B.J., Hayes, T.E., Hoban, C.J. & Cochran, B.H. The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J. 9, 4477–4484 (1990).

    Article  CAS  Google Scholar 

  25. Varinou, L. et al. Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-γ-dependent innate immunity. Immunity 19, 793–802 (2003).

    Article  CAS  Google Scholar 

  26. Decker, T., Stockinger, S., Karaghiosoff, M., Muller, M. & Kovarik, P. interferons and STATs in innate immunity to microorganisms. J. Clin. Invest. 109, 1271–1277 (2002).

    Article  CAS  Google Scholar 

  27. Anderson, S.L., Carton, J.M., Lou, J., Xing, L. & Rubin, B.Y. Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 256, 8–14 (1999).

    Article  CAS  Google Scholar 

  28. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  CAS  Google Scholar 

  29. Martinez-Guzman, D. et al. Transcription program of murine gammaherpesvirus 68. J. Virol. 77, 10488–10503 (2003).

    Article  CAS  Google Scholar 

  30. Meraz, M.A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442 (1996).

    Article  CAS  Google Scholar 

  31. Durbin, J.E., Hackenmiller, R., Simon, M.C. & Levy, D.E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article  CAS  Google Scholar 

  32. Car, B.D. et al. Interferon g receptor deficient mice are resistant to endotoxic shock. J. Exp. Med. 179, 1437–1444 (1994).

    Article  CAS  Google Scholar 

  33. Karaghiosoff, M. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat. Immunol. 4, 471–477 (2003).

    Article  CAS  Google Scholar 

  34. Kinjyo, I. et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17, 583–591 (2002).

    Article  CAS  Google Scholar 

  35. Nakagawa, R. et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 17, 677–687 (2002).

    Article  CAS  Google Scholar 

  36. Kahyo, T., Nishida, T. & Yasuda, H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell 8, 713–718 (2001).

    Article  CAS  Google Scholar 

  37. Megidish, T., Xu, J.H. & Xu, C.W. Activation of p53 by protein inhibitor of activated Stat1 (PIAS1). J. Biol. Chem. 277, 8255–8259 (2002).

    Article  CAS  Google Scholar 

  38. Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl. Acad. Sci. USA 99, 2872–2877 (2002).

    Article  CAS  Google Scholar 

  39. Johnson, E.S. & Gupta, A.A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744 (2001).

    Article  CAS  Google Scholar 

  40. Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258 (2000).

    Article  CAS  Google Scholar 

  41. Rogers, R.S., Horvath, C.M. & Matunis, M.J. SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J. Biol. Chem. 278, 30091–30097 (2003).

    Article  CAS  Google Scholar 

  42. Ungureanu, D. et al. PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102, 3311–3313 (2003).

    Article  CAS  Google Scholar 

  43. Chin, A.I. et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 416, 190–194 (2002).

    Article  CAS  Google Scholar 

  44. Wu, T.T., Usherwood, E.J., Stewart, J.P., Nash, A.A. & Sun, R. Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency. J. Virol. 74, 3659–3667 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Sun for antibodies to MHV-68 viral proteins; R. Schreiber for Jak1−/− cells; and J. Gao and B. Nguyen for technical assistance. Supported by the National Institutes of Health (K.S. and H.W.), American Cancer Society (K.S.) Howard Hughes Medical Institute (H.W.), Leukemia & Lymphoma Society (B.L.), National Institutes of Health–National Cancer Institute (training grant 5T32 CA009056 to S.M.), University of California at Los Angeles, (Sprague Jr. Fellowship to K.A.W.) and US Public Health Service (National Research Service award, GM07185 to K.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Shuai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Tyrosine phosphorylation of Stat1 and Stat2 by IFN-γ or IFN-β. (PDF 104 kb)

Supplementary Table 1

Genes hyperactivated in Pias null BMMs in response to IFNs. (PDF 34 kb)

Supplementary Table 2

Primers used in real time quantitative PCR (Q-PCR) assays. (PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Mink, S., Wong, K. et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol 5, 891–898 (2004). https://doi.org/10.1038/ni1104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing