Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development

Abstract

T lymphocyte activation is associated with activation of diverse AGC serine kinases (named after family members protein kinase A, protein kinase G and protein kinase C). It has been difficult to assess the function of these molecules in T cell development with simple gene-deletion strategies because different isoforms of AGC kinases are coexpressed in the thymus and have overlapping, redundant functions. To circumvent these problems, we explored the consequences of genetic manipulation of phosphoinositide-dependent kinase 1 (PDK1), a rate-limiting 'upstream' activator of AGC kinases. Here we analyzed the effect of PDK1 deletion on T lineage development. We also assessed the consequences of reducing PDK1 levels to 10% of normal. Complete PDK1 loss blocked T cell differentiation in the thymus, whereas reduced PDK1 expression allowed T cell differentiation but blocked proliferative expansion. These studies show that AGC family kinases are essential for T cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of LckCre+Pdpk1−/− mice.
Figure 2: Analysis of CD4CD8 DN thymocytes from LckCre+Pdpk1−/− mice.
Figure 3: S6 phosphorylation in LckCre+Pdpk1−/− thymocytes.
Figure 4: Analysis of hypomorphic Pdpk1−/fl mice.
Figure 5: Development of Pdpk1−/fl T cells in a wild-type microenvironment.

Similar content being viewed by others

References

  1. Borowski, C. et al. On the brink of becoming a T cell. Curr. Opin. Immunol. 14, 200–206 (2002).

    Article  CAS  Google Scholar 

  2. Michie, A.M., Soh, J.W., Hawley, R.G., Weinstein, I.B. & Zuniga-Pflucker, J.C. Allelic exclusion and differentiation by protein kinase C-mediated signals in immature thymocytes. Proc. Natl. Acad. Sci. USA 98, 609–614 (2001).

    Article  CAS  Google Scholar 

  3. Michie, A.M. & Zuniga-Pflucker, J.C. Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Semin. Immunol. 14, 311–323 (2002).

    Article  CAS  Google Scholar 

  4. Spits, H. Development of αβ T cells in the human thymus. Nat. Rev. Immunol. 2, 760–772 (2002).

    Article  CAS  Google Scholar 

  5. Cantrell, D.A. Regulation and function of serine kinase networks in lymphocytes. Curr. Opin. Immunol. 15, 294–298 (2003).

    Article  CAS  Google Scholar 

  6. Acuto, O. & Cantrell, D. T cell activation and the cytoskeleton. Annu. Rev. Immunol. 18, 165–184 (2000).

    Article  CAS  Google Scholar 

  7. Cantrell, D.A. Transgenic analysis of thymocyte signal transduction. Nat. Rev. Immunol. 2, 20–27 (2002).

    Article  CAS  Google Scholar 

  8. Samelson, L.E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    Article  CAS  Google Scholar 

  9. Koretzky, G.A. et al. Regulation of hematopoietic cell development and activation by adapter proteins. Immunol. Res. 27, 357–366 (2003).

    Article  CAS  Google Scholar 

  10. Marklund, U., Lightfoot, K. & Cantrell, D. Intracellular location and cell context-dependent function of protein kinase D. Immunity 19, 491–501 (2003).

    Article  CAS  Google Scholar 

  11. Rodriguez-Borlado, L. et al. Phosphatidylinositol 3-kinase regulates the CD4/CD8 T cell differentiation ratio. J. Immunol. 170, 4475–4482 (2003).

    Article  CAS  Google Scholar 

  12. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    Article  CAS  Google Scholar 

  13. Shima, H. et al. Disruption of the p70s6k/p85s6k gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 17, 6649–6659 (1998).

    Article  CAS  Google Scholar 

  14. Peng, X.D. et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes. Dev. 17, 1352–1365 (2003).

    Article  CAS  Google Scholar 

  15. Leitges, M. et al. Targeted disruption of the ζPKC gene results in the impairment of the NF-κB pathway. Mol. Cell. 8, 771–780 (2001).

    Article  CAS  Google Scholar 

  16. Leitges, M. et al. Protein kinase C-δ is a negative regulator of antigen-induced mast cell degranulation. Mol. Cell. Biol. 22, 3970–3980 (2002).

    Article  CAS  Google Scholar 

  17. Leitges, M. et al. Immunodeficiency in protein kinase cβ-deficient mice. Science 273, 788–791 (1996).

    Article  CAS  Google Scholar 

  18. Castrillo, A. et al. Protein kinase Cε is required for macrophage activation and defense against bacterial infection. J. Exp. Med. 194, 1231–1242 (2001).

    Article  CAS  Google Scholar 

  19. Mecklenbrauker, I., Saijo, K., Zheng, N.Y., Leitges, M. & Tarakhovsky, A. Protein kinase Cδ controls self-antigen-induced B-cell tolerance. Nature 416, 860–865 (2002).

    Article  Google Scholar 

  20. Su, T.T. et al. PKC-β controls IκB kinase lipid raft recruitment and activation in response to BCR signaling. Nat. Immunol. 3, 780–786 (2002).

    Article  CAS  Google Scholar 

  21. Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    Article  CAS  Google Scholar 

  22. Parker, P.J. & Parkinson, S.J. AGC protein kinase phosphorylation and protein kinase C. Biochem. Soc. Trans. 29, 860–863 (2001).

    Article  CAS  Google Scholar 

  23. Alessi, D.R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261–269 (1997).

    Article  CAS  Google Scholar 

  24. Lawlor, M.A. et al. Essential role of PDK1 in regulating cell size and development in mice. EMBO J. 21, 3728–3738 (2002).

    Article  CAS  Google Scholar 

  25. Mora, A. et al. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J. 22, 4666–4676 (2003).

    Article  CAS  Google Scholar 

  26. Takahama, Y. et al. Functional competence of T cells in the absence of glycosylphosphatidylinositol-anchored proteins caused by T cell-specific disruption of the Pig-a gene. Eur. J. Immunol. 28, 2159–2166 (1998).

    Article  CAS  Google Scholar 

  27. Buckland, J., Pennington, D.J., Bruno, L. & Owen, M.J. Co-ordination of the expression of the protein tyrosine kinase p56lck with the pre-T cell receptor during thymocyte development. Eur. J. Immunol. 30, 8–18 (2000).

    Article  CAS  Google Scholar 

  28. Aifantis, I., Buer, J., von Boehmer, H. & Azogui, O. Essential role of the pre-T cell receptor in allelic exclusion of the T cell receptor β locus. Immunity 7, 601–607 (1997).

    Article  CAS  Google Scholar 

  29. Azzam, H.S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    Article  CAS  Google Scholar 

  30. Rodewald, H.R. et al. FcγRII/III and CD2 expression mark distinct subpopulations of immature CD4-CD8-murine thymocytes: in vivo developmental kinetics and T cell receptor β chain rearrangement status. J. Exp. Med. 177, 1079–1092 (1993).

    Article  CAS  Google Scholar 

  31. Gomez, M., Kioussis, D. & Cantrell, D.A. The GTPaseRac-1 controls cell fate in the thymus by diverting thymocytes from positive to negative selection. Immunity 15, 703–713 (2001).

    Article  CAS  Google Scholar 

  32. Trigueros, C. et al. Pre-TCR signaling regulates IL-7 receptor α expression promoting thymocyte survival at the transition from the double-negative to double-positive stage. Eur. J. Immunol. 33, 1968–1977 (2003).

    Article  CAS  Google Scholar 

  33. Gallandrini, R., Henning, S. & Cantrell, D.A. Different functions for the GTPase Rho in prothymocytes and late pre-T cells. Immunity 7, 163–174 (1997).

    Article  Google Scholar 

  34. Costello, P.S., Cleverley, S.C., Galandrini, R., Henning, S.W. & Cantrell, D.A. The GTPase rho controls a p53-dependent survival checkpoint during thymopoiesis. J. Exp. Med. 192, 77–85 (2000).

    Article  CAS  Google Scholar 

  35. Vanhaesebroeck, B. & Alessi, D.R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346 Pt 3, 561–576 (2000).

    CAS  PubMed  Google Scholar 

  36. Lizcano, J.M. et al. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B. Biochem. J. 374, 297–306 (2003).

    Article  CAS  Google Scholar 

  37. Lafont, V., Astoul, E., Laurence, A., Liautard, J. & Cantrell, D. The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Lett. 486, 38–42 (2000).

    Article  CAS  Google Scholar 

  38. Kane, L.P., Andres, P.G., Howland, K.C., Abbas, A.K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nat. Immunol. 2, 37–44 (2001).

    Article  CAS  Google Scholar 

  39. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H.R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  Google Scholar 

  40. Thomas, G. The S6 kinase signaling pathway in the control of development and growth. Biol. Res. 35, 305–313 (2002).

    Article  CAS  Google Scholar 

  41. Ward, S.G. & Cantrell, D.A. Phosphoinositide 3-kinases in T lymphocyte activation. Curr. Opin. Immunol. 13, 332–338 (2001).

    Article  CAS  Google Scholar 

  42. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  43. Cantrell, D.A. Phosphoinositide 3-kinase signalling pathways. J. Cell. Sci. 114, 1439–1445 (2001).

    CAS  PubMed  Google Scholar 

  44. Harris, T.K. PDK1 and PKB/Akt: ideal targets for development of new strategies to structure-based drug design. IUBMB Life 55, 117–126 (2003).

    Article  CAS  Google Scholar 

  45. Williams, M.R. et al. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr. Biol. 10, 439–448 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Bailey, J. MacDonald, P. Hagger, G. Hutchinson, C Croucher and C. Watkins for mouse care; D. Davies, A. Eddaoudi, C. Simpson, G. Warnes and R. Clarke for help with flow cytometry; U. Marklund for discussions; P. Crocker for critical comments on the manuscript; and R. Spörri for help with the bone marrow chimera experiments and for critical comments on the manuscript. Supported by Cancer Research UK and a Wellcome Trust Principal Research Fellowship (D.A.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen A Cantrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinton, H., Alessi, D. & Cantrell, D. The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat Immunol 5, 539–545 (2004). https://doi.org/10.1038/ni1062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing