Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted inhibition of V(D)J recombination by a histone methyltransferase

Abstract

The tissue- and stage-specific assembly of antigen receptor genes by V(D)J recombination is regulated by changes in the chromatin accessibility of target gene segments. This dynamic remodeling process is coordinated by cis-acting promoters and enhancers, which function as accessibility control elements. The basic epigenetic mechanisms that activate or repress chromatin accessibility to V(D)J recombinase remain unclear. We now demonstrate that a histone methyltransferase overrides accessibility control element function and cripples V(D)J recombination of chromosomal gene segments. The recruited histone methyltransferase induces extensive revisions in the local chromatin environment, including altered histone modifications and de novo methylation of DNA. These findings indicate a key function for histone methyltransferases in the tissue- and stage-specific suppression of antigen receptor gene assembly during lymphocyte development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional targeting of G9a methyltransferase to chromosomal gene segments.
Figure 2: Recruitment of G9a alters the local pattern of histone modifications.
Figure 3: G9a inhibits germline transcription and V(D)J recombination.
Figure 4: Recruitment of G9a induces DNA methylation at chromosomal gene segments.
Figure 5: G9a inhibits V(D)J recombination independent of RSS methylation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Emerson, B.M. Specificity of gene regulation. Cell 109, 267–270 (2002).

    Article  CAS  Google Scholar 

  2. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 103, 667–678 (2000).

    Article  CAS  Google Scholar 

  3. Peterson, C.L. & Workman, J.L. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10, 187–192 (2000).

    Article  CAS  Google Scholar 

  4. Cosma, M.P. Ordered recruitment: gene-specific mechanism of transcription activation. Mol. Cell 10, 227–236 (2002).

    Article  CAS  Google Scholar 

  5. Hatzis, P. & Talianidis, I. Dynamics of enhancer-promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).

    Article  CAS  Google Scholar 

  6. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  Google Scholar 

  7. Smale, S.T. The establishment and maintenance of lymphocyte identity through gene silencing. Nat. Immunol. 4, 607–615 (2003).

    Article  CAS  Google Scholar 

  8. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  9. Peters, A.H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  Google Scholar 

  10. Tamaru, H. & Selker, E.U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  Google Scholar 

  11. Schatz, D.G., Oettinger, M.A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  12. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  Google Scholar 

  13. Mostoslavsky, R., Alt, F.W. & Bassing, C.H. Chromatin dynamics and locus accessibility in the immune system. Nat. Immunol. 4, 603–606 (2003).

    Article  CAS  Google Scholar 

  14. Krangel, M.S. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat. Immunol. 4, 624–630 (2003).

    Article  CAS  Google Scholar 

  15. Hesslein, D.G. & Schatz, D.G. Factors and forces controlling V(D)J recombination. Adv. Immunol. 78, 169–232 (2001).

    Article  CAS  Google Scholar 

  16. Oltz, E.M. Regulation of antigen receptor gene assembly in lymphocytes. Immunol. Res. 23, 121–133 (2001).

    Article  CAS  Google Scholar 

  17. Shinkai, Y. et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    Article  CAS  Google Scholar 

  18. Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897 (1996).

    Article  CAS  Google Scholar 

  19. Mathieu, N., Hempel, W.M., Spicuglia, S., Verthuy, C. & Ferrier, P. Chromatin remodeling by the T cell receptor (TCR)-β gene enhancer during early T cell development: Implications for the control of TCR-β locus recombination. J. Exp. Med. 192, 625–636 (2000).

    Article  CAS  Google Scholar 

  20. Mostoslavsky, R. et al. Kappa chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998).

    Article  CAS  Google Scholar 

  21. Demengeot, J., Oltz, E.M. & Alt, F.W. Promotion of V(D)J recombinational accessibility by the intronic E κ element: role of the κB motif. Int. Immunol. 7, 1995–2003 (1995).

    Article  CAS  Google Scholar 

  22. Whitehurst, C.E., Schlissel, M.S. & Chen, J. Deletion of germline promoter PDβ1 from the TCRβ locus causes hypermethylation that impairs Dβ1 recombination by multiple mechanisms. Immunity 13, 703–714 (2000).

    Article  CAS  Google Scholar 

  23. Morshead, K.B., Ciccone, D.N., Taverna, S.D., Allis, C.D. & Oettinger, M.A. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc. Natl. Acad. Sci. USA 100, 11577–11582 (2003).

    Article  CAS  Google Scholar 

  24. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287, 495–498 (2000).

    Article  CAS  Google Scholar 

  25. Sikes, M.L., Meade, A., Tripathi, R., Krangel, M.S. & Oltz, E.M. Regulation of V(D)J recombination: a dominant role for promoter positioning in gene segment accessibility. Proc. Natl. Acad. Sci. USA 99, 12309–12314 (2002).

    Article  CAS  Google Scholar 

  26. Tripathi, R., Jackson, A. & Krangel, M.S. A change in the structure of Vβ chromatin associated with TCRβ allelic exclusion. J. Immunol. 168, 2316–2324 (2002).

    Article  CAS  Google Scholar 

  27. Spicuglia, S. et al. Promoter activation by enhancer-dependent and -independent loading of activator and coactivator complexes. Mol. Cell 10, 1479–1487 (2002).

    Article  CAS  Google Scholar 

  28. Casellas, R. et al. OcaB is required for normal transcription and V(D)J recombination of a subset of immunoglobulin κ genes. Cell 110, 575–585 (2002).

    Article  CAS  Google Scholar 

  29. Hesslein, D.G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).

    Article  CAS  Google Scholar 

  30. Ferrier, P. et al. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J. 9, 117–125 (1990).

    Article  CAS  Google Scholar 

  31. Sikes, M.L., Suarez, C.C. & Oltz, E.M. Regulation of V(D)J recombination by transcriptional promoters. Mol. Cell. Biol. 19, 2773–2781 (1999).

    Article  CAS  Google Scholar 

  32. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    Article  CAS  Google Scholar 

  33. Agalioti, T., Chen, G. & Thanos, D. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111, 381–392 (2002).

    Article  CAS  Google Scholar 

  34. Grewal, S.I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 301, 798–802 (2003).

    Article  CAS  Google Scholar 

  35. Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738 (2003).

    Article  CAS  Google Scholar 

  36. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D.M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

    Article  CAS  Google Scholar 

  37. Ayyanathan, K. et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 17, 1855–1869 (2003).

    Article  CAS  Google Scholar 

  38. Snowden, A.W., Gregory, P.D., Case, C.C. & Pabo, C.O. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr. Biol. 12, 2159–2166 (2002).

    Article  CAS  Google Scholar 

  39. Chowdhury, D. & Sen, R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18, 229–241 (2003).

    Article  CAS  Google Scholar 

  40. Litt, M.D., Simpson, M., Gaszner, M., Allis, C.D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science 293, 2453–2455 (2001).

    Article  CAS  Google Scholar 

  41. Cherry, S.R. & Baltimore, D. Chromatin remodeling directly activates V(D)J recombination. Proc. Natl. Acad. Sci. USA 96, 10788–10793 (1999).

    Article  CAS  Google Scholar 

  42. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  Google Scholar 

  43. Zeschnigk, M. et al. Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum. Mol. Genet. 6, 387–395 (1997).

    Article  CAS  Google Scholar 

  44. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  Google Scholar 

  45. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).

    Article  CAS  Google Scholar 

  46. Cedar, H. & Bergman, Y. Developmental regulation of immune system gene rearrangement. Curr. Opin. Immunol. 11, 64–69 (1999).

    Article  CAS  Google Scholar 

  47. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  Google Scholar 

  48. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  49. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–2000 (2003).

    Article  CAS  Google Scholar 

  50. Fuks, F., Hurd, P.J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31, 2305–2312 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Sikes (North Carolina State University), K. Oestreich and H. Vekony (Vanderbilt University) for pilot studies during the initial stages of this project. We also thank D. Ballard (Vanderbilt University) for comments. Supported by the National Institutes of Health (P01 HL68744 and AI49934, E.M.O.; AI49934 and GM41052, M.S.K.), the Ministry of Education, Science, Sports, Culture, and Technology of Japan (Y.S.) and a Cancer Center Support Grant (P30 CA68485, Vanderbilt-Ingram Cancer Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene M Oltz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osipovich, O., Milley, R., Meade, A. et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat Immunol 5, 309–316 (2004). https://doi.org/10.1038/ni1042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing