Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection

Abstract

Thymocyte selection and differentiation requires extracellular signal–regulated kinase (Erk) signaling, but transcription factor substrates of Erk in thymocytes are unknown. We have characterized the function of SAP-1 (Elk4), an Erk-regulated transcription factor, in thymocyte development. Early thymocyte development was normal, but single-positive thymocyte and peripheral T cell numbers were reduced, reflecting a T cell–autonomous defect. T cell receptor–induced activation of SAP-1 target genes such as Egr1 was substantially impaired in double-positive thymocytes, although Erk activation was normal. Analysis of T cell receptor transgenes showed that positive selection was reduced by 80–90% in SAP-1-deficient mice; heterozygous mice showed a moderate defect. Negative selection was unimpaired. SAP-1 thus directly links Erk signaling to the transcriptional events required for thymocyte positive selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted inactivation of Elk4, which encodes SAP-1.
Figure 2: Thymic phenotype of SAP-1-deficient mice.
Figure 3: SAP-1 inactivation does not impair TCR signaling.
Figure 4: SAP-1 is the main TCF in T cells.
Figure 5: Defective gene transcription in SAP-1-deficient T cells.
Figure 6: SAP-1 inactivation impairs CD4 thymocyte positive selection.
Figure 7: SAP-1 inactivation impairs CD8 thymocyte positive selection but does not affect negative selection.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  Google Scholar 

  2. Germain, R.N. T-cell development and the CD4-CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  Google Scholar 

  3. Basson, M.A. & Zamoyska, R. The CD4/CD8 lineage decision: integration of signalling pathways. Immunol. Today 21, 509–514 (2000).

    Article  CAS  Google Scholar 

  4. Alberola-Ila, J. & Hernandez-Hoyos, G. The Ras/MAPK cascade and the control of positive selection. Immunol. Rev. 191, 79–96 (2003).

    Article  CAS  Google Scholar 

  5. Palmer, E. Negative selection—clearing out the bad apples from the T-cell repertoire. Nat. Rev. Immunol. 3, 383–391 (2003).

    Article  CAS  Google Scholar 

  6. Sharp, L.L., Schwarz, D.A., Bott, C.M., Marshall, C.J. & Hedrick, S.M. The influence of the MAPK pathway on T cell lineage commitment. Immunity 7, 609–618 (1997).

    Article  CAS  Google Scholar 

  7. Crompton, T., Gilmour, K.C. & Owen, M.J. The MAP kinase pathway controls differentiation from double-negative to double-positive thymocyte. Cell 86, 243–251 (1996).

    Article  CAS  Google Scholar 

  8. Sugawara, T., Moriguchi, T., Nishida, E. & Takahama, Y. Differential roles of Erk and p38 MAP kinase pathways in positive and negative selection of T lymphocytes. Immunity 9, 565–574 (1998).

    Article  CAS  Google Scholar 

  9. Mariathasan, S., Ho, S.S., Zakarian, A. & Ohashi, P.S. Degree of Erk activation influences both positive and negative thymocyte selection. Eur. J. Immunol. 30, 1060–1068 (2000).

    Article  CAS  Google Scholar 

  10. Mariathasan, S. et al. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. J. Immunol. 167, 4966–4973 (2001).

    Article  CAS  Google Scholar 

  11. Bommhardt, U., Scheuring, Y., Bickel, C., Zamoyska, R. & Hunig, T. MEK activity regulates negative selection of immature CD4+CD8+ thymocytes. J. Immunol. 164, 2326–2337 (2000).

    Article  CAS  Google Scholar 

  12. Sharp, L.L. & Hedrick, S.M. Commitment to the CD4 lineage mediated by extracellular signal-related kinase mitogen-activated protein kinase and lck signaling. J. Immunol. 163, 6598–6605 (1999).

    CAS  PubMed  Google Scholar 

  13. Bommhardt, U., Basson, M.A., Krummrei, U. & Zamoyska, R. Activation of the extracellular signal-related kinase/mitogen-activated protein kinase pathway discriminates CD4 versus CD8 lineage commitment in the thymus. J. Immunol. 163, 715–722 (1999).

    CAS  PubMed  Google Scholar 

  14. Bettini, M., Xi, H., Milbrandt, J. & Kersh, G.J. Thymocyte development in early growth response gene 1-deficient mice. J. Immunol. 169, 1713–1720 (2002).

    Article  CAS  Google Scholar 

  15. Bain, G. et al. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-Erk MAPK cascade. Nat. Immunol. 2, 165–171 (2001).

    Article  CAS  Google Scholar 

  16. Rivera, R.R., Johns, C.P., Quan, J., Johnson, R.S. & Murre, C. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 12, 17–26 (2000).

    Article  CAS  Google Scholar 

  17. Miyazaki, T. & Lemonnier, F.A. Modulation of thymic selection by expression of an immediate-early gene, early growth response 1 (Egr-1). J. Exp. Med. 188, 715–723 (1998).

    Article  CAS  Google Scholar 

  18. Carleton, M. et al. Early growth response transcription factors are required for development of CD4CD8 thymocytes to the CD4+CD8+ stage. J. Immunol. 168, 1649–1658 (2002).

    Article  CAS  Google Scholar 

  19. Calnan, B.J., Szychowski, S., Chan, F.K., Cado, D. & Winoto, A. A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 3, 273–282 (1995).

    Article  CAS  Google Scholar 

  20. Cheng, L.E., Chan, F.K., Cado, D. & Winoto, A. Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis. Eur. J. Immunol. 27, 2048–2056 (1997).

    Article  Google Scholar 

  21. Lee, S.L. et al. Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science 269, 532–535 (1995).

    Article  CAS  Google Scholar 

  22. Treisman, R. Ternary complex factors: growth factor regulated transcriptional activators. Curr. Opin. Genet. Dev. 4, 96–101 (1994).

    Article  CAS  Google Scholar 

  23. Shaw, P.E., Schroter, H. & Nordheim, A. The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell 56, 563–572 (1989).

    Article  CAS  Google Scholar 

  24. Herrera, R.E., Shaw, P.E. & Nordheim, A. Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature 340, 68–70 (1989).

    Article  CAS  Google Scholar 

  25. Hassler, M. & Richmond, T.J. The B-box dominates SAP-1-SRF interactions in the structure of the ternary complex. EMBO J. 20, 3018–3028 (2001).

    Article  CAS  Google Scholar 

  26. Murai, K. & Treisman, R. Interaction of serum response factor (SRF) with the Elk-1 B-box inhibits RhoA-actin signalling to SRF and potentiates transcriptional activation by Elk-1. Mol. Cell. Biol. 22, 7083–7092 (2002).

    Article  CAS  Google Scholar 

  27. Hill, C.S. & Treisman, R. Differential activation of c-fos promoter elements by serum, lysophosphatidic acid, G proteins and polypeptide growth factors. EMBO J. 14, 5037–5047 (1995).

    Article  CAS  Google Scholar 

  28. McMahon, S.B. & Monroe, J.G. A ternary complex factor-dependent mechanism mediates induction of egr-1 through selective serum response elements following antigen receptor cross-linking in B lymphocytes. Mol. Cell. Biol. 15, 1086–1093 (1995).

    Article  CAS  Google Scholar 

  29. Williams, G.T. & Lau, L.F. Activation of the inducible orphan receptor gene nur77 by serum growth factors: dissociation of immediate-early and delayed-early responses. Mol. Cell. Biol. 13, 6124–6136 (1993).

    Article  CAS  Google Scholar 

  30. Palestro, G., Turrini, F., Pagano, M. & Chiusa, L. Castleman's disease. Adv. Clin. Path. 3, 11–22 (1999).

    CAS  PubMed  Google Scholar 

  31. Favata, M.F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–18632 (1998).

    Article  CAS  Google Scholar 

  32. Price, M.A., Rogers, A.E. & Treisman, R. Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET). EMBO J. 14, 2589–2601 (1995).

    Article  CAS  Google Scholar 

  33. Latinkic, B.V., Zeremski, M. & Lau, L.F. Elk-1 can recruit SRF to form a ternary complex upon the serum response element. Nucleic Acids Res. 24, 1345–1351 (1996).

    Article  CAS  Google Scholar 

  34. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  Google Scholar 

  35. Testi, R., D'Ambrosio, D., De Maria, R. & Santoni, A. The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol. Today 15, 479–483 (1994).

    Article  CAS  Google Scholar 

  36. Azzam, H.S. et al. Fine tuning of TCR signaling by CD5. J. Immunol. 166, 5464–5472 (2001).

    Article  CAS  Google Scholar 

  37. Davis, S.J. et al. The nature of molecular recognition by T cells. Nat. Immunol. 4, 217–224 (2003).

    Article  CAS  Google Scholar 

  38. Ohashi, P.S., Pircher, H., Burki, K., Zinkernagel, R.M. & Hengartner, H. Distinct sequence of negative or positive selection implied by thymocyte T-cell receptor densities. Nature 346, 861–863 (1990).

    Article  CAS  Google Scholar 

  39. Mamalaki, C. et al. Positive and negative selection in transgenic mice expressing a T-cell receptor specific for influenza nucleoprotein and endogenous superantigen. Dev. Immunol. 3, 159–174 (1993).

    Article  CAS  Google Scholar 

  40. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  Google Scholar 

  41. Bain, G., Quong, M.W., Soloff, R.S., Hedrick, S.M. & Murre, C. Thymocyte maturation is regulated by the activity of the helix-loop-helix protein, E47. J. Exp. Med. 190, 1605–1616 (1999).

    Article  CAS  Google Scholar 

  42. Lau, L.F. & Nathans, D. Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc. Natl. Acad. Sci. USA 84, 1182–1186 (1987).

    Article  CAS  Google Scholar 

  43. Christy, B.A. et al. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc. Natl. Acad. Sci. USA 88, 1815–1819 (1991).

    Article  CAS  Google Scholar 

  44. Clarkson, R.W., Shang, C.A., Levitt, L.K., Howard, T. & Waters, M.J. Ternary complex factors Elk-1 and Sap-1a mediate growth hormone-induced transcription of egr-1 (early growth response factor-1) in 3T3-F442A preadipocytes. Mol. Endocrinol. 13, 619–631 (1999).

    Article  CAS  Google Scholar 

  45. Gong, Q. et al. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat. Immunol. 2, 29–36 (2001).

    Article  CAS  Google Scholar 

  46. Dequiedt, F. et al. HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity 18, 687–698 (2003).

    Article  CAS  Google Scholar 

  47. Yoon, J.K. & Lau, L.F. Transcriptional activation of the inducible nuclear receptor gene nur77 by nerve growth factor and membrane depolarization in PC12 cells. J. Biol. Chem. 268, 9148–9155 (1993).

    CAS  PubMed  Google Scholar 

  48. Cesari, F. et al. Mice deficient for the Ets transcription factor Elk-1 show normal immune responses and mildly impaired neuronal gene activation. Mol. Cell. Biol. 24, 294–305 (2004).

    Article  CAS  Google Scholar 

  49. Ayadi, A. et al. Net-targeted mutant mice develop a vascular phenotype and up-regulate egr-1. EMBO J. 20, 5139–5152 (2001).

    Article  CAS  Google Scholar 

  50. Zheng, H. et al. The transcription factor Net regulates the angiogenic switch. Genes Dev. 17, 2283–2297 (2003).

    Article  CAS  Google Scholar 

  51. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro . Immunity 17, 749–756 (2002).

    Article  CAS  Google Scholar 

  52. Miralles, F., Posern, G., Zaromytidou, A.-I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Batista, D. Cantrell, C. Dickson, M. Owen, C. Reis e Sousa, K. Weston and R. Zamoyska for discussions and/or comments on the manuscript. We thank W. Heath (Walter and Eliza Hall Institute, Melbourne, Australia) for the OT-II transgenic mice; A. Smith for the targeting vector; Cancer Research UK Biological Resources Unit for animal husbandry; and D. Davies, G. Warne and C. Simpson of the London Research Institute FACS facility for cell sorting and technical support. Supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Treisman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costello, P., Nicolas, R., Watanabe, Y. et al. Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection. Nat Immunol 5, 289–298 (2004). https://doi.org/10.1038/ni1038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing