Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TLR9 signals after translocating from the ER to CpG DNA in the lysosome

Abstract

Microbial DNA sequences containing unmethylated CpG dinucleotides activate Toll-like receptor 9 (TLR9). We have found that TLR9 is localized to the endoplasmic reticulum (ER) of dendritic cells (DCs) and macrophages. Because there is no precedent for immune receptor signaling in the ER, we investigated how TLR9 is activated. We show that CpG DNA binds directly to TLR9 in ligand-binding studies. CpG DNA moves into early endosomes and is subsequently transported to a tubular lysosomal compartment. Concurrent with the movement of CpG DNA in cells, TLR9 redistributes from the ER to CpG DNA–containing structures, which also accumulate MyD88. Our data indicate a previously unknown mechanism of cellular activation involving the recruitment of TLR9 from the ER to sites of CpG DNA uptake, where signal transduction is initiated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescently labeled TLR9 is expressed in the ER.
Figure 2: Fluorescent CpG DNA enters pDCs in vesicular structures and moves into a tubular compartment.
Figure 3: CpG DNA enters cells via a clathrin-dependent, caveolin-independent pathway.
Figure 4: CpG DNA binds to TLR9.
Figure 5: TLR9 and MyD88 translocate to sites of CpG DNA in a MyD88-independent manner.
Figure 6: Endogenous TLR9 redistributes to CpG-containing compartments.

Similar content being viewed by others

References

  1. Tokunaga, T. et al. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J. Natl. Cancer Inst. 72, 955–962 (1984).

    CAS  PubMed  Google Scholar 

  2. Yamamoto, S., Kuramoto, E., Shimada, S. & Tokunaga, T. In vitro augmentation of natural killer cell activity and production of interferon-α/β and -γ with deoxyribonucleic acid fraction from Mycobacterium bovis BCG. Jpn. J. Cancer Res. 79, 866–873 (1988).

    Article  CAS  Google Scholar 

  3. Krieg, A.M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).

    Article  CAS  Google Scholar 

  4. Agrawal, S. & Kandimalla, E.R. Medicinal chemistry and therapeutic potential of CpG DNA. Trends Mol. Med. 8, 114–121 (2002).

    Article  CAS  Google Scholar 

  5. Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).

    Article  CAS  Google Scholar 

  6. Gordon, S. Pattern recognition receptors: doubling up for the innate immune response. Cell 111, 927–930 (2002).

    Article  CAS  Google Scholar 

  7. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  8. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98, 9237–9242 (2001).

    Article  CAS  Google Scholar 

  9. Tauszig, S., Jouanguy, E., Hoffmann, J.A. & Imler, J.L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl. Acad. Sci. USA 97, 10520–10525 (2000).

    Article  CAS  Google Scholar 

  10. Weber, A.N. et al. Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat. Immunol. 4, 794–800 (2003).

    Article  CAS  Google Scholar 

  11. Manzel, L. & Macfarlane, D.E. Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide. Antisense Nucleic Acid Drug. Dev. 9, 459–464 (1999).

    Article  CAS  Google Scholar 

  12. Yamamoto, T., Yamamoto, S., Kataoka, T. & Tokunaga, T. Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol. Immunol. 38, 831–836 (1994).

    Article  CAS  Google Scholar 

  13. Gursel, I., Gursel, M., Ishii, K.J. & Klinman, D.M. Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J. Immunol. 167, 3324–3328 (2001).

    Article  CAS  Google Scholar 

  14. Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230–6240 (1998).

    Article  CAS  Google Scholar 

  15. Yi, A.K. et al. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J. Immunol. 160, 4755–4761 (1998).

    CAS  PubMed  Google Scholar 

  16. Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958–1968 (2002).

    Article  CAS  Google Scholar 

  17. Takeshita, F. et al. Cutting edge: Role of Toll-like receptor 9 in CpG DNA–induced activation of human cells. J. Immunol. 167, 3555–3558 (2001).

    Article  CAS  Google Scholar 

  18. Latz, E. et al. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the Toll-like receptor 4–MD-2–CD14 complex in a process that is distinct from the initiation of signal transduction. J. Biol. Chem. 277, 47834–47843 (2002).

    Article  CAS  Google Scholar 

  19. Hornung, V. et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531–4537 (2002).

    Article  CAS  Google Scholar 

  20. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    Article  CAS  Google Scholar 

  21. Stenmark, H., Aasland, R. & Driscoll, P.C. The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett. 513, 77–84 (2002).

    Article  CAS  Google Scholar 

  22. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  23. Desjardins, M. ER-mediated phagocytosis: a new membrane for new functions. Nat. Rev. Immunol. 3, 280–291 (2003).

    Article  CAS  Google Scholar 

  24. Gagnon, E. et al. Endoplasmic reticulum–mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    Article  CAS  Google Scholar 

  25. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9–mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    Article  CAS  Google Scholar 

  26. Flo, T.H. et al. Involvement of Toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J. Biol. Chem. 277, 35489–35495 (2002).

    Article  CAS  Google Scholar 

  27. Underhill, D.M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    Article  CAS  Google Scholar 

  28. Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 100, 6646–6651 (2003).

    Article  CAS  Google Scholar 

  29. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell. Dev. Biol. 12, 575–625 (1996).

    Article  CAS  Google Scholar 

  30. Garin, J. et al. The phagosome proteome: insight into phagosome functions. J. Cell. Biol. 152, 165–180 (2001).

    Article  CAS  Google Scholar 

  31. Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    Article  CAS  Google Scholar 

  32. Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

    Article  CAS  Google Scholar 

  33. Okazaki, Y., Ohno, H., Takase, K., Ochiai, T. & Saito, T. Cell surface expression of calnexin, a molecular chaperone in the endoplasmic reticulum. J. Biol. Chem. 275, 35751–35758 (2000).

    Article  CAS  Google Scholar 

  34. Johnson, S., Michalak, M., Opas, M. & Eggleton, P. The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell. Biol. 11, 122–129 (2001).

    Article  CAS  Google Scholar 

  35. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  Google Scholar 

  36. Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418, 988–994 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Halmen, L. Ryan, R. Vik and K. Egeberg for technical support; S. Akira (Osaka University, Osaka, Japan) for the full-length TLR9 cDNA and the MyD88-deficient mice; S. Ishizaka (Eisai Research Institute, Andover, Massachusetts, USA) for the HEK–TLR9–NF-κB–luc reporter cell line; B. Seed (Harvard University and Massachusetts General Hospital, Boston, Massachusetts, USA) for the retroviral vector peak12mmp; N. Aliverdi (eBiosciences, San Diego, California, USA) for TLR9 mAbs; A. Sundan (Norwegian Institute of Science and Technology, Trondheim, Norway) for antibody labeling; and H. Stenmark (Norwegian Radium Hospital, Oslo, Norway) for the FYVE-GFP construct. This work was supported by grants from the National Institute of Health (D.T.G), the Commission of the European Communities (T.E. and D.T.G.), the Norwegian Research Council and the Norwegian Cancer Society (T.E.), and by the German Academic Exchange Program (E.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T Golenbock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latz, E., Schoenemeyer, A., Visintin, A. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5, 190–198 (2004). https://doi.org/10.1038/ni1028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing