Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of Drosophila IKKγ in a Toll-independent antibacterial immune response

Abstract

We have generated, by ethylmethane sulfonate mutagenesis, loss-of-function mutants in the Drosophila homolog of the mammalian I-κB kinase (IKK) complex component IKKγ (also called NEMO). Our data show that Drosophila IKKγ is required for the Relish-dependent immune induction of the genes encoding antibacterial peptides and for resistance to infections by Escherichia coli. However, it is not required for the Toll-DIF–dependent antifungal host defense. The results indicate distinct control mechanisms of the Rel-like transactivators DIF and Relish in the Drosophila innate immune response and show that Drosophila Toll does not signal through a IKKγ-dependent signaling complex. Thus, in contrast to the vertebrate inflammatory response, IKKγ is required for the activation of only one immune signaling pathway in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune-inducibility of most antimicrobial peptide genes is affected in kenny mutants.
Figure 2: key mutant flies are highly sensitive to bacterial, but not natural fungal, infections.
Figure 3: key is required for Diptericin promoter binding of Relish but not for DIF nuclear uptake.
Figure 4: The Drosophila NEMO-IKKγ homolog is mutated in key flies.
Figure 5: The one Rel protein–one transduction pathway model in Drosophila.

Similar content being viewed by others

References

  1. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Bulet, P., Hetru, C., Dimarcq, J. L. & Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Ekengren, S. & Hultmark, D. Drosophila cecropin as an antifungal agent. Insect Biochem. Mol. Biol. 29, 965 –972 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Levashina, E. A. et al. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233, 694–700 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Lowenberger, C. et al. Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J. Biol. Chem. 274, 20092 –20097 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Engström, Y. et al. KappaB-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232, 327–333 (1993).

    Article  PubMed  Google Scholar 

  7. Kappler, C. et al. Insect immunity. Two 17-bp repeats nesting a kappaB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J. 12 , 1561–1568 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meister, M., Braun, A., Kappler, C., Reichhart, J.-M. & Hoffmann, J. A. Insect immunity. A transgenic analysis in Drosophila defines several functional domains in the diptericin promoter. EMBO J. 13, 5958–5966 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steward, R. Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238, 692– 694 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Ip, Y.T. et al. Dif, a dorsal-related gene that mediates an immune-response in Drosophila. Cell 75, 753– 763 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Dushay, M. S., Asling, B. & Hultmark, D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl Acad. Sci. USA 93, 10343–10347 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila. Immunity 12, 569–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF- kappaB factor. Genes Dev. 13, 792–797 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 1–20 (1999).

    Article  Google Scholar 

  15. Govind, S. Control of development and immunity by Rel transcription factors in Drosophila. Oncogene 18, 6875– 6887 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Manfruelli, P., Reichhart, J. M., Steward, R., Hoffmann, J. A. & Lemaitre, B. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18, 3380– 3391 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tatei, K. & Levine, M. Specificity of Rel-inhibitor interactions in Drosophila embryos. Mol. Cell. Biol. 15, 3627–3634 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Nicolas, E., Reichhart, J. M., Hoffmann, J. A. & Lemaitre, B. In vivo regulation of the IkB homologue cactus during the immune response of Drosophila. J. Biol. Chem. 273, 10463–10469 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Levashina, E. A. et al. Constitutive activation of Toll-mediated antifungal defense in serpin- deficient Drosophila. Science 285 , 1917–1919 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophilia NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO R. (in the press, 2000).

  22. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA 92, 9465– 9469 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, L.P. & Anderson, K. V. Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392, 93–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Corbo, J. C. & Levine, M. Characterization of an immunodeficiency mutant in Drosophila. Mech. Dev. 55, 211 –220 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Levashina, E. A., Ohresser, S., Lemaitre, B. & Imler, J. L. Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J. Mol. Biol. 278 , 515–527 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential display of antimicrobial peptide genes after infection by various classes of microorganisms . Proc. Natl Acad. Sci. USA 94, 14614– 14619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flyg, C. & Boman, H. G. Drosophila genes cut and miniature are associated with the susceptibility to infection by Serratia marcessens. Genet. Res. 52, 51–56 (1988).

    Article  CAS  Google Scholar 

  28. Cohen, S. M., Bronner, G., Kuttner, F., Jurgens, G. & Jackle, H. Distal-less encodes a homoeodomain protein required for limb development in Drosophila. Nature 338, 432–434 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Silverman, N. et al. A Drosophila I-B kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev., in press (2000).

  30. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395, 297–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Mercurio, F. et al. IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. Cell. Biol. 19, 1526–1538 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, Y. et al. Identification of a cell protein (FIP-3) as a modulator of NF-kappaB activity and as a target of an adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis. Proc. Natl Acad. Sci. USA 96, 1042–1047 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 12, 301–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Israël, A. The IKK complex: an integrator of all signals that affect NF-kappaB. Trends Cell Biol. 10, 129–133 (2000).

    Article  PubMed  Google Scholar 

  36. Smahi, A. et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405, 466– 472 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Rudolph, D. et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 14, 854–862 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmidt-Supprian, M. et al. NEMO/IKKγ-deficient mice model Incontinentia Pigmenti . Mol. Cell 5, 981–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Makris, C. et al. Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder Incontinentia Pigmenti. Mol. Cell 5, 969– 979 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Peters, R.T., Liao, S.-M. & Maniatis, T. IKK epsilon is part of a novel PMA-inducible I-kappaB kinase complex. Mol. Cell 5, 513– 522 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Pomerantz, J. L. & Baltimore, D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694– 6704 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tojima, Y. et al. NAK is an IkappaB kinase-activating kinase. Nature 404, 778–782 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Lu, Y., Wu, L. & Anderson, K. Molecular and genetic analysis of ird5 gene. 40th Annual Drosophila Research Conference 143 (Seattle, 1999).

    Google Scholar 

  44. Kim, Y. S. et al. Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J. Biol. Chem. 275, 2071– 2079 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Williams, M., Rodriguez, A., Kimbrell, D. & Eldon, E. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J. 15, 6120– 6130 (1997).

    Article  Google Scholar 

  46. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infections. EMBO R. (in the press, 2000).

  47. Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10781– 10784 (2000).

  48. Lemaitre, B. et al. Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J. 14, 536–545 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Hultmark for Relish fly stocks; E. Langley and M.-C. Criqui for the DIF antibody; M.-C. Criqui for participating in initial phases of the screen; C. Troccon, S. Storck and S. Dissel for help with the screen; P. Georgel for help with gel retardation assays; R. Lanot for phagocytosis assays; and J.-M. Reichhart and T. Maniatis for their interest and support. Supported by CNRS, the Human Frontiers in Science Program (to J. H.), the Helen Hey Whitney Foundation (to N. S.), NIH grants (GM29379, GM59919 to T. Maniatis; 1PO1 AI44220-02 to A. Ezekowitz and J. H.), the French Ministère de l'Education Nationale, de la Recherche et de la Technologie (PRFMMIP) and the Fondation pour la Recherche Médicale (aide à l'implantation de nouvelles équipes to D. F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Ferrandon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutschmann, S., Jung, A., Zhou, R. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nat Immunol 1, 342–347 (2000). https://doi.org/10.1038/79801

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing