Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation

Abstract

The plasma membranes of eukaryotic cells are not uniform and possess distinct cholesterol– and sphingolipid–rich raft microdomains that are enriched in proteins known to be essential for cellular function. Lipid raft microdomains are important for T cell receptor (TCR)–mediated activation of T cells. However, the importance of lipid rafts on antigen presenting cells (APCs) and their role in major histocompatibility (MHC) class II–restricted antigen presentation has not been examined. MHC class II molecules were found to be constitutively present in plasma membrane lipid rafts in B cells. Disruption of these microdomains dramatically inhibited antigen presentation at limiting concentrations of antigen. The inhibitory effect of raft disruption on antigen presentation could be overcome by loading the APCs with exceptionally high doses of antigen, showing that raft association concentrates MHC class II molecules into microdomains that allow efficient antigen presentation at low ligand densities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disrupting lipid raft integrity inhibits antigen presentation.
Figure 2: Nystatin inhibits presentation of intact protein and preprocessed peptide antigens to T cells.
Figure 3: Disrupting raft integrity inhibits antigen presentation by MHC class II–expressing fibroblasts.
Figure 4: Raft-disrupting drugs do not alter surface expression or peptide association with MHC class II.
Figure 5: MHC class II molecules are associated with raft microdomains.
Figure 6: Lipid raft marker colocalizes with MHC class II but not CD45R.
Figure 7: MCD disrupts MHC class II association with rafts.
Figure 8: Raft disruption preferentially inhibits antigen presentation at low ligand densities.
Figure 9: Hypothetical model for effects of raft disruption on MHC class II–restricted T cell activation.

Similar content being viewed by others

References

  1. Simons, K. & Ikonen, E. Functional rafts in cell membranes . Nature 387, 569–572 (1997).

    Article  CAS  Google Scholar 

  2. Harder, T. & Simons, K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol. 9, 534–542 ( 1997).

    Article  CAS  Google Scholar 

  3. Brown, D.A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    Article  CAS  Google Scholar 

  4. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394 , 798–801 (1998).

    Article  CAS  Google Scholar 

  5. Pralle, A., Keller, P., Florin, E., Simons, K. & Horber, J.K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000).

    Article  CAS  Google Scholar 

  6. Keller, P. & Simons, K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol. 140, 1357–1367 (1998).

    Article  CAS  Google Scholar 

  7. Horejsi, V. et al. GPI-microdomains: a role in signalling via immunoreceptors . Immunol. Today 20, 356– 361 (1999).

    Article  CAS  Google Scholar 

  8. Rodgers, W. & Rose, J.K. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. J. Cell Biol. 135, 1515–1523 (1996).

    Article  CAS  Google Scholar 

  9. Kabouridis, P.S., Magee, A.I. & Ley, S.C. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 16, 4983–4998 (1997).

    Article  CAS  Google Scholar 

  10. Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation . Immunity 9, 239–246 (1998).

    Article  CAS  Google Scholar 

  11. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723– 732 (1998).

    Article  CAS  Google Scholar 

  12. Moran, M. & Miceli, M.C. Engagement of GPI-linked CD48 contributes to TCR signals and cytoskeletal reorganization: a role for lipid rafts in T cell activation. Immunity 9, 787– 796 (1998).

    Article  CAS  Google Scholar 

  13. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  Google Scholar 

  14. Janes, P.W., Ley, S.C. & Magee, A.I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461 (1999).

    Article  CAS  Google Scholar 

  15. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains . Science 283, 680–682 (1999).

    Article  CAS  Google Scholar 

  16. Rothberg, K.G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 ( 1992).

    Article  CAS  Google Scholar 

  17. Kilsdonk, E.P. et al. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250–17256 (1995).

    Article  CAS  Google Scholar 

  18. Scheiffele, P., Roth, M.G. & Simons, K. Interaction of influenza virus haemagglutinin with sphingolipid- cholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508 ( 1997).

    Article  CAS  Google Scholar 

  19. Jenkins, M.K., Pardoll, D.M., Mizuguchi, J., Quill, H. & Schwartz, R.H. T-cell unresponsiveness in vivo and in vitro: fine specificity of induction and molecular characterization of the unresponsive state. Immunol. Rev. 95, 113–135 (1987).

    Article  CAS  Google Scholar 

  20. Barisas, B.G., Wade, W.F., Jovin, T.M., Arndt-Jovin, D. & Roess, D.A. Dynamics of molecules involved in antigen presentation: effects of fixation. Mol. Immunol. 36, 701 –708 (1999).

    Article  CAS  Google Scholar 

  21. Germain, R.N. & Hendrix, L.R. MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding . Nature 353, 134–139 (1991).

    Article  CAS  Google Scholar 

  22. Davidson, H.W., Reid, P.A., Lanzavecchia, A. & Watts, C. Processed antigen binds to newly synthesized MHC class II molecules in antigen-specific B lymphocytes. Cell 67, 105– 116 (1991).

    Article  CAS  Google Scholar 

  23. Brown, D.A. & Rose, J.K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533– 544 (1992).

    Article  CAS  Google Scholar 

  24. Cheng, P.C., Dykstra, M.L., Mitchell, R.N. & Pierce, S.K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting . J. Exp. Med. 190, 1549– 1560 (1999).

    Article  CAS  Google Scholar 

  25. Glickman, J.N., Morton, P.A., Slot, J.W., Kornfeld, S. & Geuze, H.J. The biogenesis of the MHC class II compartment in human I-cell disease B lymphoblasts. J. Cell Biol. 132, 769–785 (1996).

    Article  CAS  Google Scholar 

  26. Watts, T.H., Brian, A.A., Kappler, J.W., Marrack, P. & McConnell, H.M. Antigen presentation by supported planar membranes containing affinity- purified I-Ad. Proc. Natl Acad. Sci. USA 81, 7564– 7568 (1984).

    Article  CAS  Google Scholar 

  27. Watts, T.H. T cell activation by preformed, long-lived Ia-peptide complexes. Quantitative aspects. J. Immunol. 141, 3708– 3714 (1988).

    CAS  PubMed  Google Scholar 

  28. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221– 227 (1999).

    Article  CAS  Google Scholar 

  29. Field, K.A., Holowka, D. & Baird, B. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J. Biol. Chem. 272, 4276–4280 (1997).

    Article  CAS  Google Scholar 

  30. Jenei, A. et al. HLA class I and II antigens are partially co-clustered in the plasma membrane of human lymphoblastoid cells. Proc. Natl Acad. Sci. USA 94, 7269–7274 ( 1997).

    Article  CAS  Google Scholar 

  31. Turley, S.J. et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288, 522– 527 (2000).

    Article  CAS  Google Scholar 

  32. Huby, R.D., Dearman, R.J. & Kimber, I. Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts. J. Biol. Chem. 274, 22591–22596 (1999).

    Article  CAS  Google Scholar 

  33. Smart, E.J., Ying, Y.S., Mineo, C. & Anderson, R.G. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl Acad. Sci. USA 92, 10104– 10108 (1995).

    Article  CAS  Google Scholar 

  34. Song, K.S. et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690–9697 (1996).

    Article  CAS  Google Scholar 

  35. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  36. Dustin, M.L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94, 667–677 (1998).

    Article  CAS  Google Scholar 

  37. Wang, W. et al. A naturally processed peptide presented by HLA-A*0201 is expressed at low abundance and recognized by an alloreactive CD8+ cytotoxic T cell with apparent high affinity. J. Immunol. 158, 5797–5804 ( 1997).

    CAS  PubMed  Google Scholar 

  38. Demotz, S., Grey, H.M. & Sette, A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science 249, 1028 –1030 (1990).

    Article  CAS  Google Scholar 

  39. Harding, C.V. & Unanue, E.R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346, 574–576 ( 1990).

    Article  CAS  Google Scholar 

  40. Ronchese, F., Schwartz, R.H. & Germain, R.N. Functionally distinct subsites on a class II major histocompatibility complex molecule. Nature 329, 254–256 (1987).

    Article  CAS  Google Scholar 

  41. Anderson, H.A. & Roche, P.A. Phosphorylation regulates the delivery of MHC class II invariant chain complexes to antigen processing compartments. J. Immunol. 160, 4850–4858 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Winkler for peptide synthesis, J. Ashwell for the cytochrome c-specific 2B4 T cell hybridoma, J. Miller for the class II antiserum, T. Brotz for advice and assistance with our microscopy studies and A. Singer and R. Hodes for discussions and for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Roche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, H., Hiltbold, E. & Roche, P. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 1, 156–162 (2000). https://doi.org/10.1038/77842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing