Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Chromatin dynamics and locus accessibility in the immune system

Abstract

Development in vertebrates follows distinctive pathways of cellular differentiation. Starting from the zygote, newly formed cells continually differentiate until they reach a final mature fate. Whether differentiating into a neuron, a hepatocyte or a myofibril, every normal cell, with the exception of developing lymphocytes, carries the same genetic information enclosed within its nucleus. To acquire distinct cellular identities, cells need to control gene expression in a very regulated way. Genes encoding factors required for identity at a particular developmental stage need to be appropriately activated, whereas genes required for identity during the previous developmental stage are often silenced. Moreover, once a cell becomes terminally differentiated, 'heritable' gene expression must be maintained in all daughter cells and, thus, faithfully recapitulated after each cellular division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Ahmad, K. & Henikoff, S. Epigenetic consequences of nucleosome dynamics. Cell 111, 281–284 (2002).

    Article  CAS  Google Scholar 

  2. Reynaud, C.A., Aoufouchi, S., Faili, A. & Weill, J.-C. What role for AID: mutator, or assembler of the Ig-mutasome? Nat. Immunol. 4, 631–638 (2003).

    Article  CAS  Google Scholar 

  3. Ansel, K.M., Lee, D.U. & Rao, A. An epigenetic view of helper T cell differentiation. Nat. Immunol. 4, 616–623 (2003).

    Article  CAS  Google Scholar 

  4. Smale, S.T. The establishment and maintenance of gene silencing during lymphocyte development. Nat. Immunol. 4, 607–615 (2003).

    Article  CAS  Google Scholar 

  5. Krangel, M.S. Gene segment selection during V(D)J recombination: accessibility and beyond. Nat. Immunol. 4, 624–630 (2003).

    Article  CAS  Google Scholar 

  6. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  7. Chen, J. Analysis of gene function in lymphocytes by RAG-2 deficient blastocyst complementation. Adv. Immunol. 62, 31–59 (1996).

    Article  CAS  Google Scholar 

  8. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 Suppl, S45–55 (2002).

    Article  CAS  Google Scholar 

  9. Fugmann, S.D., Lee, A.I., Shockett, P.E., Villey, I.J. & Schatz, D.G. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18, 495–527 (2000).

    Article  CAS  Google Scholar 

  10. Manis, J.P., Tian, M. & Alt, F.W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002).

    Article  CAS  Google Scholar 

  11. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  Google Scholar 

  12. Fugmann, S.D. & Schatz, D.G. RNA AIDs DNA. Nat. Immunol. 4, 429–430 (2003).

    Article  CAS  Google Scholar 

  13. Storb, U. & Stavnezer, J. Immunoglobulin genes: generating diversity with AID and UNG. Curr. Biol. 12, R725–727 (2002).

    Article  CAS  Google Scholar 

  14. Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897 (1996).

    Article  CAS  Google Scholar 

  15. Sleckman, B.P., Bardon, C.G., Ferrini, R., Davidson, L. & Alt, F.W. Function of the TCRα enhancer in αβ and γδ T cells. Immunity 7, 505–515 (1997).

    Article  CAS  Google Scholar 

  16. Mostoslavsky, R. et al. κ-chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998).

    Article  CAS  Google Scholar 

  17. Hernandez-Munain, C., Sleckman, B.P. & Krangel, M.S. A developmental switch from TCRδ enhancer to TCRα enhancer function during thymocyte maturation. Immunity 10, 723–733 (1999).

    Article  CAS  Google Scholar 

  18. Yancopoulos, G.D., Blackwell, T.K., Suh, H., Hood, L. & Alt, F.W. Introduced T cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase. Cell 44, 251–259 (1986).

    Article  CAS  Google Scholar 

  19. Hempel, W.M., Leduc, I., Mathieu, N., Tripathi, R.K. & Ferrier, P. Accessibility control of V(D)J recombination: lessons from gene targeting. Adv. Immunol. 69, 309–352 (1998).

    Article  CAS  Google Scholar 

  20. Martin, A. & Scharff, M.D. AID and mismatch repair in antibody diversification. Nat. Rev. Immunol. 2, 605–14. (2002).

    Article  CAS  Google Scholar 

  21. Hesslein, D.G. & Schatz, D.G. Factors and forces controlling V(D)J recombination. Adv. Immunol. 78, 169–232 (2001).

    Article  CAS  Google Scholar 

  22. Engel, J.D. & Tanimoto, K. Looping, linking, and chromatin activity: new insights into β-globin locus regulation. Cell 100, 499–502 (2000).

    Article  CAS  Google Scholar 

  23. Khamlichi, A.A., Pinaud, E., Decourt, C., Chauveau, C. & Cogne, M. The 3′ IgH regulatory region: a complex structure in a search for a function. Adv. Immunol. 75, 317–345 (2000).

    Article  CAS  Google Scholar 

  24. Redon, C. et al. Histone H2A variants H2AX and H2AZ. Curr. Opin. Genet. Dev. 12, 162–169 (2002).

    Article  CAS  Google Scholar 

  25. Chen, H.T. et al. Response to RAG-mediated VDJ cleavage by NBS1 and γ-H2AX. Science 290, 1962–1965 (2000).

    Article  CAS  Google Scholar 

  26. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–5. (2001).

    Article  CAS  Google Scholar 

  27. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    Article  CAS  Google Scholar 

  28. Paull, T.T. New glimpses of an old machine. Cell 107, 563–565 (2001).

    Article  CAS  Google Scholar 

  29. Meneghini, M.D., Wu, M. & Madhani, H.D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003).

    Article  CAS  Google Scholar 

  30. van Leeuwen, F. & Gottschling, D. E. The histone minority report: the variant shall not be silenced. Cell 112, 591–593 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank David Jung and Katrin Chua for manuscript discussions. F.W.A is an Investigator and C.H.B. an Associate of the Howard Hughes Medical Institute. R.M. is supported by a Human Frontier Science Program fellowship. Work in the lab is also supported by the National Institutes of Health and the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick W Alt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mostoslavsky, R., Alt, F. & Bassing, C. Chromatin dynamics and locus accessibility in the immune system. Nat Immunol 4, 603–606 (2003). https://doi.org/10.1038/ni0703-603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0703-603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing