Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE

Abstract

The inducible costimulatory molecule (ICOS) is expressed on activated T cells and participates in a variety of important immunoregulatory functions. After the induction of experimental allergic encephalomyelitis in SJL mice with proteolipid protein (PLP), brain ICOS mRNA and protein were up-regulated on infiltrating CD3+ T cells before disease onset. ICOS blockade during the efferent immune response (9–20 days after immunization) abrogated disease, but blockade during antigen priming (1–10 days after immunization) exacerbated disease. Upon culture with PLP and compared with immunized controls, splenocytes produced either decreased interferon-γ (IFN-γ, in efferent blockade) or excessive IFN-γ (in priming blockade). PLP-specific immunoglobulin G1 was decreased in animals treated with anti-ICOS during antigen priming, but not in other groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain infiltration with CD3+ ICOS+ T cells correlates with onset of clinical symptoms
Figure 2: Clinical symptoms in animals treated with anti-ICOS at various stages of the immune response.
Figure 3: ICOS blockade during antigen priming enhances brain leukocyte infiltration on day 14; blockade during the efferent immune response inhibits CNS inflammation.
Figure 4: RPA of brain chemokine, chemokine receptor and cytokine mRNA expression.
Figure 5: Splenocyte IFN-γ production and proliferation upon exposure to recall antigen on day 12 after immunization.
Figure 6: Plasma PLP-specific IgG1 is decreased in mice treated with anti-ICOS during antigen priming.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  2. Perrin, P. J. et al. Blockade of CD28 during in vitro activation of encephalitogenic T cells or after disease onset ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 163, 1704–1710 (1999).

    CAS  PubMed  Google Scholar 

  3. Tada, Y. et al. CD28-deficient mice are highly resistant to collagen-induced arthritis. J. Immunol. 162, 203–208 (1999).

    CAS  PubMed  Google Scholar 

  4. Mathur, M. et al. CD28 interactions with either CD80 or CD86 are sufficient to induce allergic airway inflammation in mice. Am. J. Respir. Cell. Mol. Biol. 21, 498–509 (1999).

    Article  CAS  Google Scholar 

  5. Kopf, M. et al. Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J. Exp. Med. 192, 53–61 (2000).

    Article  CAS  Google Scholar 

  6. McAdam, A. J. et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4(+) T cells. J. Immunol. 165, 5035–5040 (2000).

    Article  CAS  Google Scholar 

  7. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  Google Scholar 

  8. Mages, H. W. et al. Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur. J. Immunol. 30, 1040–1047 (2000).

    Article  CAS  Google Scholar 

  9. Coyle, A. J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    Article  CAS  Google Scholar 

  10. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  Google Scholar 

  11. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  Google Scholar 

  12. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  Google Scholar 

  13. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    Article  CAS  Google Scholar 

  14. Wekerle, H. Immunopathogenesis of multiple sclerosis. Acta. Neurol. Napoli 13, 197–204 (1991).

    CAS  PubMed  Google Scholar 

  15. Rottman, J. B. et al. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur. J. Immunol. 30, 2372–2377 (2000).

    Article  CAS  Google Scholar 

  16. Karpus, W. J. et al. An important role for the chemokine macrophage inflammatory protein-1α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155, 5003–5010 (1995).

    CAS  PubMed  Google Scholar 

  17. Constantinescu, C. S. et al. Modulation of susceptibility and resistance to an autoimmune model of multiple sclerosis in prototypically susceptible and resistant strains by neutralization of interleukin-12 and interleukin-4, respectively. Clin. Immunol. 98, 23–30 (2001).

    Article  CAS  Google Scholar 

  18. Izikson, L. et al. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med. 192, 1075–1080 (2000).

    Article  CAS  Google Scholar 

  19. Glabinski, A. R. et al. Synchronous synthesis of α- and β-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am. J. Pathol. 150, 617–630 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Okuda, Y. et al. Enhancement of Th2 response in IL-6-deficient mice immunized with myelin oligodendrocyte glycoprotein. J. Neuroimmunol. 105, 120–123 (2000).

    Article  CAS  Google Scholar 

  21. Das, M. P., Nicholson, L. B., Greer, J. M. & Kuchroo, V. K. Autopathogenic T helper cell type 1 (Th1) and protective Th2 clones differ in their recognition of the autoantigenic peptide of myelin proteolipid protein. J. Exp. Med. 186, 867–876 (1997).

    Article  CAS  Google Scholar 

  22. Boom, W. H., Liano, D. & Abbas, A. K. Heterogeneity of helper/inducer T lymphocytes. II. Effects of interleukin 4- and interleukin 2-producing T cell clones on resting B lymphocytes. J. Exp. Med. 167, 1350–1363 (1988).

    Article  CAS  Google Scholar 

  23. Gerritse, K. et al. CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc. Natl Acad. Sci. USA 93, 2499–2504 (1996).

    Article  CAS  Google Scholar 

  24. Chang, T. T. et al. Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J. Exp. Med. 190, 733–740 (1999).

    Article  CAS  Google Scholar 

  25. Perrin, P. J. et al. Opposing effects of CTLA4-Ig and anti-CD80 (B7-1) plus anti-CD86 (B7-2) on experimental allergic encephalomyelitis. J. Neuroimmunol. 65, 31–39 (1996).

    Article  CAS  Google Scholar 

  26. Perrin, P. J. et al. CTLA-4 blockade enhances clinical disease and cytokine production during experimental allergic encephalomyelitis. J. Immunol. 157, 1333–1336 (1996).

    CAS  PubMed  Google Scholar 

  27. Racke, M. K. et al. Distinct roles for B7–1 (CD-80) and B7-2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J. Clin. Invest. 96, 2195–2203 (1995).

    Article  CAS  Google Scholar 

  28. Cross, A. H., Cannella, B., Brosnan, C. F. & Raine, C. S. Homing to central nervous system vasculature by antigen-specific lymphocytes. I. Localization of 14C-labeled cells during acute, chronic, and relapsing experimental allergic encephalomyelitis. Lab. Invest. 63, 162–170 (1990).

    CAS  PubMed  Google Scholar 

  29. Krakowski, M. L. & Owens, T. The central nervous system environment controls effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis. Eur. J. Immunol. 27, 2840–2847 (1997).

    Article  CAS  Google Scholar 

  30. Ransohoff, R. M., Glabinski, A. & Tani, M. Chemokines in immune-mediated inflammation of the central nervous system. Cytokine Growth Factor Rev. 7, 35–46 (1996).

    Article  CAS  Google Scholar 

  31. Aloisi, F., Ria, F., Penna, G. & Adorini, L. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J. Immunol. 160, 4671–4680 (1998).

    CAS  PubMed  Google Scholar 

  32. Boddeke, E. W. et al. Cultured rat microglia express functional β-chemokine receptors. J. Neuroimmunol. 98, 176–184 (1999).

    Article  CAS  Google Scholar 

  33. McColl, S. R. & Clark-Lewis, I. Inhibition of murine neutrophil recruitment in vivo by CXC chemokine receptor antagonists. J. Immunol. 163, 2829–2835 (1999).

    CAS  PubMed  Google Scholar 

  34. Samoilova, E. B. et al. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J. Immunol. 161, 6480–6486 (1998).

    CAS  PubMed  Google Scholar 

  35. Jacobs, C. A. et al. Experimental autoimmune encephalomyelitis is exacerbated by IL-1 alpha and suppressed by soluble IL-1 receptor. J. Immunol. 146, 2983–2989 (1991).

    CAS  PubMed  Google Scholar 

  36. Bourdoulous, S. et al. Anergy induction in encephalitogenic T cells by brain microvessel endothelial cells is inhibited by interleukin-1. Eur. J. Immunol. 25, 1176–1183 (1995).

    Article  CAS  Google Scholar 

  37. Özkaynak E et al. Importance of ICOS-B7RP-1 co-stimulation in acute and chronic allograft rejection. Nature Immunol. 2, 591–596 (2001).

    Article  Google Scholar 

  38. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  39. Sedgwick, J. D. et al. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl Acad. Sci. USA 88, 7438–7442 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Hancock and C. Horvath for critical review of this manuscript and K. McDonald for antibody production and purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Rottman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rottman, J., Smith, T., Tonra, J. et al. The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat Immunol 2, 605–611 (2001). https://doi.org/10.1038/89750

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing