Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse Stat2

Abstract

The use of murine systems to model pathogen-induced human diseases presumes that general immune mechanisms between these species are conserved. One important immunoregulatory mechanism involves linkage of innate and adaptive immunity to direct the development of T helper subsets, for example toward subset 1 (TH1) development through STAT4 activation. In analyzing type I interferon signaling, we uncovered a difference between murine and human cells which may affect how these two species control linkage between innate and adaptive immunity. We show that in humans, type I interferons induce TH1 development and can activate STAT4 by recruitment to the IFN-α receptor complex specifically via the carboxy-terminus of STAT2. However, the mouse Stat2 gene harbors a minisatellite insertion that has altered the carboxy-terminus and selectively disrupted its capacity to activate STAT4, but not other STATs. This defect in murine Stat2 suggests that the signals leading to STAT4 activation and TH1 development in CD4+ T cells are different between mice and humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human STAT2, but not Y690, is required for IFN-α–induced STAT4 phosphorylation.
Figure 2: Alignment of human and murine STAT2 COOH-termini.
Figure 3: A functional SH2 domain within STAT4 is required for IFN-α–induced STAT4 tyrosine phosphorylation.
Figure 4: IFN-α–induced STAT4 tyrosine phosphorylation requires the COOH-terminal domain of human STAT2.
Figure 5: The COOH-terminal domain of human STAT2 confers the species-specific activation of STAT4 in response to IFN-α.
Figure 6: STAT4 activation by type I interferon in human and mouse.

Similar content being viewed by others

References

  1. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  Google Scholar 

  2. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251–276 (1995).

    Article  CAS  Google Scholar 

  3. Hsieh, C.-S et al. Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  Google Scholar 

  4. Jacobson, N. G. et al. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med. 181, 1755–1762 (1995).

    Article  CAS  Google Scholar 

  5. Unanue, E. R. Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response. Immunol. Rev. 158, 11–25 (1997).

    Article  CAS  Google Scholar 

  6. Bacon, C. M. et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc. Natl Acad. Sci. USA 92, 7307–7311 (1995).

    Article  CAS  Google Scholar 

  7. Kaplan, M. H., Sun, Y.-L, Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    Article  CAS  Google Scholar 

  8. Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174 (1996).

    Article  CAS  Google Scholar 

  9. Manetti, R. et al. Interleukin 12 induces stable priming for interferon γ (IFN-γ) production during differentiation of human T helper (Th) cells and transient IFN-γ production in established Th2 cell clones. J. Exp. Med. 179, 1273–1283 (1994).

    Article  CAS  Google Scholar 

  10. de Jong, R. et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280, 1435–1438 (1998).

    Article  CAS  Google Scholar 

  11. Altare, R. et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280, 1432–1435 (1998).

    Article  CAS  Google Scholar 

  12. Wenner, C. A., Güler, M. L., Macatonia, S. E., O'Garra, A. & Murphy, K. M. Roles of IFN-γ and IFN-γ in IL-12-induced T helper cell-1 development. J. Immunol. 156, 1442–1447 (1996).

    CAS  Google Scholar 

  13. Rogge, L. et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185, 825–831 (1997).

    Article  CAS  Google Scholar 

  14. Rogge, L. et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol. 161, 6567–6574 (1998).

    CAS  Google Scholar 

  15. Farrar, J. D., Smith, J. D., Murphy, T. L. & Murphy, K. M. Recruitment of Stat4 to the human IFN-α/β receptor requires activated Stat2. J. Biol. Chem. 275, 2693–2697 (2000).

    Article  CAS  Google Scholar 

  16. Parronchi, P. et al. IL-4 and IFN (α and γ) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones. J. Immunol. 149, 2977–2983 (1992).

    CAS  Google Scholar 

  17. Brinkmann, V., Geiger, T., Alkan, S. & Heusser, C. H. Interferon α increases the frequency of interferon γ-producing human CD4+ T cells. J. Exp. Med. 178, 1655–1663 (1993).

    Article  CAS  Google Scholar 

  18. Cho, S. et al. Activation of STAT4 by IL-12 and IFN-α. Evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J. Immunol. 157, 4781–4789 (1996).

    CAS  Google Scholar 

  19. Naeger, L. K., McKinney, J., Salvekar, A. & Hoey, T. Identification of a STAT4 binding site in the interleukin-12 receptor required for signaling. J. Biol. Chem. 274, 1875–1878 (1999).

    Article  CAS  Google Scholar 

  20. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  21. Li, X, Leung, S., Kerr, I. M. & Stark, G. R. Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol. Cell. Biol. 17, 2048–2056 (1997).

    Article  CAS  Google Scholar 

  22. Yan, H. et al. Phosphorylated interferon-α receptor 1 subunit (IFN-αR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. EMBO J. 15, 1064–1074 (1996).

    Article  CAS  Google Scholar 

  23. Qureshi, S. A., Leung, S., Kerr, I. M., Stark, G. R. & Darnell, J. E. Function of Stat2 protein in transcriptional activation by alpha interferon. Mol. Cell. Biol. 16, 288–293 (1996).

    Article  CAS  Google Scholar 

  24. Leung, S., Qureshi, S. A., Kerr, I. M., Darnell, J. E. & Stark, G. R. Role of STAT2 in the α interferon signaling pathwaya. Mol. Cell. Biol. 15, 1312–1317 (1995).

    Article  CAS  Google Scholar 

  25. Yang, C.-H et al. Direct association of STAT3 with the IFN-αR-1 chain of the human type I interferon receptor. J. Biol. Chem. 271, 8057–8061 (1996).

    Article  CAS  Google Scholar 

  26. Pfeffer, L. M. et al. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFN-αR1 chain of the type I interferon receptor. Science 276, 1418–1420 (1997).

    Article  CAS  Google Scholar 

  27. McKendry, R., John, J., Flavell, R. A., Kerr, I. M. & Stark, G. R. High-frequency mutagenesis of human cells and characterization of a mutant unresponsive to both α and γ interferons. Proc. Natl Acad. Sci. USA 88, 11455–11459 (1991).

    Article  CAS  Google Scholar 

  28. Yan, R., Qureshi, S. A., Zhong, Z., Wen, Z. & Darnell, J. E. The genomic structure of the STAT genes: multiple exons in coincident sites in Stat1 and Stat2. Nucleic Acids Res. 23, 459–463 (1995).

    Article  CAS  Google Scholar 

  29. Paulson, M et al. Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J. Biol. Chem. 274, 25343–25349 (1999).

    Article  CAS  Google Scholar 

  30. Park, C., Lecomte, M. J. & Schindler, C. Murine Stat2 is uncharacteristically divergent. Nucleic Acids Res. 27, 4191–4199 (1999).

    Article  CAS  Google Scholar 

  31. Poy, F. et al. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol.Cell 4, 555–561 (1999).

    Article  CAS  Google Scholar 

  32. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    Article  CAS  Google Scholar 

  33. Mayer, B. J., Jackson, P. K., Van Etten, R. A. & Baltimore, D. Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo. Mol. Cell Biol. 12, 609–618 (1992).

    Article  CAS  Google Scholar 

  34. Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R. M. & Hengartner, H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 14, 207–232 (1996).

    Article  CAS  Google Scholar 

  35. Schmid, D. S. The human MHC-restricted cellular response to herpes simplex virus type 1 is mediated by CD4+, CD8- T cells and is restricted to the DR region of the MHC complex. J. Immunol. 140, 3610–3616 (1988).

    CAS  Google Scholar 

  36. Schmid, D. S. & Mawle, A. C. T cell responses to herpes simplex viruses in humans. Rev. Infect. Dis. 13 Suppl. 11, S946–S949 (1991).

    Article  Google Scholar 

  37. Schmid, D. S. and Rouse, B. T. The role of T cell immunity in control of herpes simplex virus. Curr. Top. Microbiol. Immunol. 179, 57–74 (1992).

    CAS  Google Scholar 

  38. Jacobson, S., Sekaly, R. P., Jacobson, C. L., McFarland, H. F. & Long, E. O. HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. J. Virol. 63, 1756–1762 (1989).

    CAS  PubMed Central  Google Scholar 

  39. Jacobson, S. et al. Recognition of intracellular measles virus antigens by HLA class II restricted measles virus-specific cytotoxic T lymphocytes. Ann. NY Acad. Sci. 540, 352–353 (1988).

    Article  CAS  Google Scholar 

  40. Carter, L. L. & Murphy, K. M. Lineage-specific requirement for signal transducer and activator of transcription (Stat)4 in Interferon γ production from CD4+ versus CD8+ T cells. J. Exp. Med. 189, 1355–1360 (1999).

    Article  CAS  Google Scholar 

  41. Ranganath, S. H. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998).

    CAS  Google Scholar 

  42. Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  Google Scholar 

  43. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  Google Scholar 

  44. Güler, M. L., Jacobson, N. G., Gubler, U. & Murphy, K. M. T cell genetic background determines maintenance of IL-12 signaling. Effects on BALB/c and B10.D2 T helper cell type 1 phenotype development. J. Immunol. 159, 1767–1774 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank Dominic Fenoglio for help with Cell Sorting and Alice Mui for a partial murine Stat2 cDNA. This work was supported by NIH grants AI34580, and HL56419. K.M.M. is an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrar, J., Smith, J., Murphy, T. et al. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse Stat2. Nat Immunol 1, 65–69 (2000). https://doi.org/10.1038/76932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing