Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling

Abstract

Vav-1 and Vav-2 are closely related Dbl-homology GTP exchange factors (GEFs) for Rho GTPases. Mutation of Vav-1 disrupts T cell development and T cell antigen receptor–induced activation, but has comparatively little effect on B cells. We found that combined deletion of both Vav-1 and Vav-2 in mice resulted in a marked reduction in mature B lymphocyte numbers. Vav-1−/−Vav-2−/− B cells were unresponsive to B cell antigen receptor (BCR)-driven proliferation in vitro and to thymus-indepen-dent antigen in vivo. BCR-stimulated intracellular calcium mobilization was greatly impaired in Vav-1−/−Vav-2−/− B cells. These findings establish a role for Vav-2 in BCR calcium signaling and reveal that the Vav family of GEFs is critical to B cell development and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Vav-2−/− mutant mice.
Figure 2: T lymphocyte differentiation in Vav-mutant mice.
Figure 3: B lymphocyte differentiation in Vav-mutant mice.
Figure 4: Impaired antigen receptor–activated B cell proliferation and humoral responses in Vav-deficient mice.
Figure 5: Vav-2 in BCR signaling and tyrosine phosphorylation in Vav-1−/−Vav-2−/− B cells.
Figure 6: Vav-1−/−Vav-2−/− B cells do not mobilize calcium activated by BCR.

Similar content being viewed by others

References

  1. Benschop, R. J. & Cambier, J. C. B cell development: signal transduction by antigen receptors and their surrogates. Curr. Opin. Immunol. 11, 143–151 (1999).

    Article  CAS  Google Scholar 

  2. Pillai, S. The chosen few? Positive selection and the generation of naive B lymphocytes. Immunity 10, 493–502 (1999).

    Article  CAS  Google Scholar 

  3. Carsetti, R., Kohler, G. & Lamers, M. C. Transitional B cells are the target of negative selection in the B cell compartment. J. Exp. Med. 181, 2129–2140 (1995).

    Article  CAS  Google Scholar 

  4. Melamed, D., Benschop, R. J., Cambier, J. C. & Nemazee, D. Developmental regulation of B lymphocyte immune tolerance comparmentalizes clonal selection from receptor selection. Cell 92, 173–182 (1998).

    Article  CAS  Google Scholar 

  5. Kurosaki, T. Functional dissection of BCR signaling pathways. Curr. Opin. Immunol. 12, 276–281 (2000).

    Article  CAS  Google Scholar 

  6. Kerner, J. D. et al. Impaired expansion of mouse B cell progenitors lacking Btk. Immunity 3, 301–312 (1995).

    Article  CAS  Google Scholar 

  7. Khan, W. N. et al. Defective B cell development and function in Btk-deficient mice. Immunity 3, 283–299 (1995).

    Article  CAS  Google Scholar 

  8. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  Google Scholar 

  9. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    Article  CAS  Google Scholar 

  10. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    Article  CAS  Google Scholar 

  11. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science 286, 1949–1954 (1999).

    Article  CAS  Google Scholar 

  12. Hayashi, K. et al. The B cell-restricted adaptor BASH is required for normal development and antigen receptor-mediated activation of B cells. Proc. Natl Acad. Sci. USA 97, 2755–2760 (2000).

    Article  CAS  Google Scholar 

  13. Xu, S. et al. B cell development and activation defects resulting in xid-like immunodeficiency in BLNK/SLP-65-deficient mice. Int. Immunol. 12, 397–404 (2000).

    Article  CAS  Google Scholar 

  14. Wang, D. et al. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25–35 (2000).

    Article  Google Scholar 

  15. Fruman, D. A., Satterthwaite, A. B. & Witte, O. N. Xid-like phenotypes: a B cell signalosome takes shape. Immunity 13, 1–3 (2000).

    Article  CAS  Google Scholar 

  16. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    Article  CAS  Google Scholar 

  17. Bustelo, X. R. Regulatory and signaling properties of the Vav family. Mol. Cell Biol. 20, 1461–1477 (2000).

    Article  CAS  Google Scholar 

  18. Bustelo, X. R., Rubin, S. D., Suen, K. L., Carrasco, D. & Barbacid, M. Developmental expression of the vav protooncogene. Cell. Growth Differ. 4, 297–308 (1993).

    CAS  PubMed  Google Scholar 

  19. Schuebel, K. E. et al. Isolation and characterization of murine vav-2, a member of the vav family of proto-oncogenes. Oncogene 13, 363–371 (1996).

    CAS  PubMed  Google Scholar 

  20. Movilla, N. & Bustelo, X. R. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol. Cell Biol. 19, 7870–7885 (1999).

    Article  CAS  Google Scholar 

  21. Fischer, K. D., Tedford, K. & Penninger, J. M. Vav links antigen-receptor signaling to the actin cytoskeleton. Semin. Immunol. 10, 317–327 (1998).

    Article  CAS  Google Scholar 

  22. Fischer, K. D. et al. Defective T-cell receptor signalling and positive selection of Vav- deficient CD4+ CD8+ thymocytes. Nature 374, 474–7 (1995).

    Article  CAS  Google Scholar 

  23. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    Article  CAS  Google Scholar 

  24. Kong, Y. Y. et al. Vav regulates peptide-specific apoptosis in thymocytes. J. Exp. Med. 188, 2099–2111 (1998).

    Article  CAS  Google Scholar 

  25. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).

    Article  CAS  Google Scholar 

  26. Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H. & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374, 470–473 (1995).

    Article  CAS  Google Scholar 

  27. Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T- cell receptor. Curr. Biol. 8, 554–562 (1998).

    Article  CAS  Google Scholar 

  28. Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    Article  CAS  Google Scholar 

  29. Holsinger, L. J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).

    Article  CAS  Google Scholar 

  30. O'Rourke, L. M. et al. CD19 as a membrane-anchored adaptor protein of B lymphocytes: costimulation of lipid and protein kinases by recruitment of Vav. Immunity 8, 635–645 (1998).

    Article  CAS  Google Scholar 

  31. Bachmann, M. F. et al. The guanine-nucleotide exchange factor Vav is a crucial regulator of B cell receptor activation and B cell responses to nonrepetitive antigens. J. Immunol. 163, 137–142 (1999).

    CAS  PubMed  Google Scholar 

  32. Gulbranson-Judge, A. et al. Defective immunoglobulin class switching in Vav–deficient mice is attributable to compromised T cell help. Eur. J. Immunol. 29, 477–487 (1999).

    Article  CAS  Google Scholar 

  33. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of the B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    Article  CAS  Google Scholar 

  34. Klaus, G. G., Holman, M., Johnson-Leger, C., Elgueta-Karstegl, C. & Atkins, C. A re-evaluation of the effects of X-linked immunodeficiency (xid) mutation on B cell differentiation and function in the mouse. Eur. J. Immunol. 27, 2749–2756 (1997).

    Article  CAS  Google Scholar 

  35. Doody, G. M. et al. Vav-2 controls NFAT-dependent transcription in B- but not T-lymphocytes. EMBO J. 19, 6173–6184 (2000).

    Article  CAS  Google Scholar 

  36. Moores, S. L. et al. Vav family proteins couple to diverse cell surface receptors. Mol. Cell Biol. 20, 6364–7633 (2000).

    Article  CAS  Google Scholar 

  37. Deckert, M., Tartare-Deckert, S., Couture, C., Mustelin, T. & Altman, A. Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product. Immunity 5, 591–604 (1996).

    Article  CAS  Google Scholar 

  38. Wu, J., Zhao, Q., Kurosaki, T. & Weiss, A. The Vav binding site (Y315) in ZAP-70 is critical for antigen receptor- mediated signal transduction. J. Exp. Med. 185, 1877–1882 (1997).

    Article  CAS  Google Scholar 

  39. Fu, C., Turck, C. W., Kurosaki, T. & Chan, A. C. BLNK: a central linker protein in B cell activation. Immunity 9, 93–103 (1998).

    Article  CAS  Google Scholar 

  40. Wienands, J. et al. SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J. Exp. Med. 188, 791–795 (1998).

    Article  CAS  Google Scholar 

  41. Kelly, M. E. & Chan, A. C. Regulation of B cell function by linker proteins. Curr. Opin. Immunol. 12, 267–275 (2000).

    Article  CAS  Google Scholar 

  42. Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279, 558–560 (1998).

    Article  CAS  Google Scholar 

  43. Fu, C. & Chan, A. C. Identification of two tyrosine phosphoproteins, pp70 and pp68, which interact with phospholipase Cγ, Grb2, and Vav after B cell antigen receptor activation. J. Biol. Chem. 272, 27362–27368 (1997).

    Article  CAS  Google Scholar 

  44. Hashimoto, S. et al. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK—functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood 94, 2357–2364 (1999).

    CAS  PubMed  Google Scholar 

  45. Su, Y. W. et al. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur J. Immunol. 29, 3702–3711 (1999).

    Article  CAS  Google Scholar 

  46. Aman, M. J. & Ravichandran, K. S. A requirement for lipid rafts in B cell receptor induced Ca(2+) flux. Curr. Biol. 10, 393–396 (2000).

    Article  CAS  Google Scholar 

  47. Guo, B., Kato, R. M., Garcia-Lloret, M., Wahl, M. I. & Rawlings, D. J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  Google Scholar 

  48. Weng, W. K., Jarvis, L. & LeBien, T. W. Signaling through CD19 activates Vav/mitogen-activated protein kinase pathway and induces formation of a CD19/Vav/phosphatidylinositol 3-kinase complex in human B cell precursors. J. Biol. Chem. 269, 32514–32521 (1994).

    CAS  PubMed  Google Scholar 

  49. Tedder, T. F., Inaoki, M. & Sato, S. The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6, 107–118 (1997).

    Article  CAS  Google Scholar 

  50. Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S. & Bustelo, X. R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385, 169–172 (1997).

    Article  CAS  Google Scholar 

  51. Schuebel, K. E., Movilla, N., Rosa, J. L. & Bustelo, X. R. Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J. 17, 6608–6621 (1998).

    Article  CAS  Google Scholar 

  52. Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  53. Ogilvy, S. et al. Transcriptional regulation of Vav, a gene expressed throughout the hematopoietic compartment. Blood 91, 419–430 (1998).

    CAS  PubMed  Google Scholar 

  54. Zmuidzinas, A. et al. The Vav proto-oncogene is required early in embryogenesis but not for hematopoietic development in vitro. EMBO J. 14, 1–11 (1995).

    Article  CAS  Google Scholar 

  55. Rolink, A., Kudo, A., Karasuyama, H., Kikuchi, Y. & Melchers, F. Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo. EMBO J. 10, 327–336 (1991).

    Article  CAS  Google Scholar 

  56. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  Google Scholar 

  57. Rolink, A., Melchers, F. & Andersson, J. The SCID but not the RAG-2 gene product is required for S mu-S epsilon heavy chain class switching. Immunity 5, 319–330 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Penninger and T. Wirth for critical reading of the manuscript, U. R. Rapp for support and A. Heiter and S. Rotzoll for technical help. We also thank J. Wienands and M. Reth for reagents used in initial studies and W.-D. Jin for help in the early stages of this work, which was initiated when A. C. and M. B. were at the Bristol-Myers Squibb Pharmaceutical Research Institute. Supported by grants from DFG (Fi2-1) and Thyssen Stiftung (to K.-D. F) and SFB465 (to L. N. and K.-D. F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dieter Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tedford, K., Nitschke, L., Girkontaite, I. et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat Immunol 2, 548–555 (2001). https://doi.org/10.1038/88756

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing