Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antigen decoding by T lymphocytes: from synapses to fate determination

Abstract

Naïve T lymphocytes sense foreign antigens by establishing contacts with dendritic cells (DCs). At the immunological synapse between the T cell and a DC, T cell receptors (TCRs) are serially engaged and triggered by specific ligands. The amount and duration of TCR triggering and the efficiency of signal amplification determine T cell commitment to proliferation and differentiation. The nature and availability of DCs bearing antigen and costimulatory molecules shape the T cell response, giving rise to distinct functional outputs such as effector and memory T cell generation or T cell tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms that sustain and amplify signaling at the immunological synapse.
Figure 2: The role of antigen and costimulation in TCR triggering and T cell activation.
Figure 3: The role of TCR stimulation in driving T cell proliferation and differentiation.
Figure 4: Competition for access to DCs leads to selection of responding T cells and immunodominance.

Similar content being viewed by others

References

  1. Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol. 1, 23–29 (2000).

    Article  CAS  Google Scholar 

  2. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Beeson, C. et al. Early biochemical signals arise from low affinity TCR-ligand reactions at the cell-cell interface. J. Exp. Med. 184, 777–782 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Hudrisier, D. et al. The efficiency of antigen recognition by CD8+ CTL clones is determined by the frequency of serial TCR engagement. J. Immunol. 161, 553–562 (1998).

    CAS  PubMed  Google Scholar 

  6. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Valitutti, S., Muller, S., Dessing, M. & Lanzavecchia, A. Signal extinction and T cell repolarization in T helper cell-antigen-presenting cell conjugates. Eur. J. Immunol. 26, 2012–2016 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Valitutti, S. & Lanzavecchia, A. Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol. Today 18, 299–304 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Weber, S., Traunecker, A., Oliveri, F., Gerhard, W. & Karjalainen, K. Specific low-affinity recognition of major histocompatibility complex plus peptide by soluble T-cell receptor. Nature 356, 793–796 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Davis, M. M. et al. Ligand recognition by αß T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Itoh, Y., Hemmer, B., Martin, R. & Germain, R. N. Serial TCR engagement and down-modulation by peptide:MHC molecule ligands: relationship to the quality of individual TCR signaling events. J. Immunol. 162, 2073–2080 (1999).

    CAS  PubMed  Google Scholar 

  14. Kalergis, A. M. et al. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nature Immunol. 2, 229–234 (2001).

    Article  CAS  Google Scholar 

  15. Viola, A. et al. Quantitative contribution of CD4 and CD8 to T cell antigen receptor serial triggering. J. Exp. Med. 186, 1775–1779 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Madrenas, J., Chau, L. A., Smith, J., Bluestone, J. A. & Germain, R. N. The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide-MHC molecule ligands. J. Exp. Med. 185, 219–229 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chau, L. A., Bluestone, J. A. & Madrenas, J. Dissociation of intracellular signaling pathways in response to partial agonist ligands of the T cell receptor. J. Exp. Med. 187, 1699–1709 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kupfer, A. & Singer, S. J. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu. Rev. Immunol. 7, 309–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Reichert, P., Reinhardt, R. L., Ingulli, E. & Jenkins, M. K. Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J. Immunol. 166, 4278–4281 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, K. G., Bromley, S. K., Dustin, M. L. & Thomas, M. L. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc. Natl Acad. Sci. USA 97, 10138–10143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leupin, O., Zaru, R., Laroche, T., Muller, S. & Valitutti, S. Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes. Curr. Biol. 10, 277–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Davis, S. J. & van der Merwe, P. A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17, 177–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Shaw, A. S. & Dustin, M. L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6, 361–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Wild, M. K. et al. Dependence of T cell antigen recognition on the dimensions of an accessory receptor-ligand complex. J. Exp. Med. 190, 31–41 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wulfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Delon, J. et al. CD8 expression allows T cell signaling by monomeric peptide-MHC complexes. Immunity 9, 467–473 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Lanzavecchia, A., Iezzi, G. & Viola, A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1–4 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Arcaro, A. et al. Essential role of CD8 palmitoylation in CD8 coreceptor function. J Immunol 165, 2068–2076 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Janes, P. W., Ley, S. C. & Magee, A. I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Delon, J. & Germain, R. N. Information transfer at the immunological synapse. Curr. Biol. 10, 923–933 (2000).

    Article  Google Scholar 

  37. Krummel, M. F., Sjaastad, M. D., Wulfing, C. & Davis, M. M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Krangel, M. S. Endocytosis and recycling of the T3-T cell receptor complex. The role of T3 phosphorylation. J. Exp. Med. 165, 1141–1159 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Minami, Y., Samelson, L. E. & Klausner, R. D. Internalization and cycling of the T cell antigen receptor. Role of protein kinase C. J. Biol. Chem. 262, 13342–13347 (1987).

    CAS  PubMed  Google Scholar 

  40. Dietrich, J. et al. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor. J. Biol. Chem. 271, 11441–11448 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Salio, M., Valitutti, S. & Lanzavecchia, A. Agonist-induced T cell receptor down-regulation: molecular requirements and dissociation from T cell activation. Eur. J. Immunol. 27, 1769–1773 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Valitutti, S., Muller, S., Salio, M. & Lanzavecchia, A. Degradation of T cell receptor (TCR)-CD3-ζ complexes after antigenic stimulation. J. Exp. Med. 185, 1859–1864 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cenciarelli, C. et al. Activation-induced ubiquitination of the T cell antigen receptor. Science 257, 795–797 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Lupher, M. L., Rao, N., Eck, M. J. & Band, H. The Cbl protooncoprotein: a negative regulator of immune receptor signal transduction. Immunol. Today 20, 375–382 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. D'Oro, U., Vacchio, M. S., Weissman, A. M. & Ashwell, J. D. Activation of the Lck tyrosine kinase targets cell surface T cell antigen receptors for lysosomal degradation. Immunity 7, 619–628 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Penna, D. et al. Degradation of ZAP-70 following antigenic stimulation in human T lymphocytes: role of calpain proteolytic pathway. J. Immunol. 163, 50–56 (1999).

    CAS  PubMed  Google Scholar 

  49. Liu, H., Rhodes, M., Wiest, D. L. & Vignali, D. A. On the dynamics of TCR:CD3 complex cell surface expression and downmodulation. Immunity 13, 665–675 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Viola, A., Linkert, S. & Lanzavecchia, A. A T cell receptor (TCR) antagonist competitively inhibits serial TCR triggering by low-affinity ligands, but does not affect triggering by high-affinity anti-CD3 antibodies. Eur. J. Immunol. 27, 3080–3083 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Bachmann, M. F. et al. Peptide-induced T cell receptor down-regulation on naive T cells predicts agonist/partial agonist properties and strictly correlates with T cell activation. Eur. J. Immunol. 27, 2195–2203 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Preckel, T., Grimm, R., Marin, S. & Weltzien, H. U. Altered hapten ligands antagonize trinitrophenyl-specific cytotoxic T cells and block internalization of hapten-specific receptors. J. Exp. Med. 185, 1803–1813 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, J. F. et al. TCR-Mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952–954 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Hwang, I. et al. T cells can use either T cell receptor or CD28 receptors to absorb and internalize cell surface molecules derived from antigen-presenting cells. J. Exp. Med. 191, 1137–1148 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Tuosto, L. & Acuto, O. CD28 affects the earliest signaling events generated by TCR engagement. Eur. J. Immunol. 28, 2131–2142 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Cai, Z. et al. Requirements for peptide-induced T cell receptor downregulation on naive CD8+ T cells. J. Exp. Med. 185, 641–651 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bachmann, M. F. et al. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J. Exp. Med. 189, 1521–1530 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tuosto, L. et al. Organization of plasma membrane functional rafts upon T cell activation. Eur. J. Immunol. 31, 345–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz, R. H. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71, 1065–1068 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Boise, L. H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3, 87–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Kundig, T. M. et al. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 5, 41–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Cantrell, D. A. & Smith, K. A. The interleukin-2 T-cell system: a new cell growth model. Science 224, 1312–1316 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Weiss, A., Shields, R., Newton, M., Manger, B. & Imboden, J. Ligand-receptor interactions required for commitment to the activation of the interleukin 2 gene. J. Immunol. 138, 2169–2176 (1987).

    CAS  PubMed  Google Scholar 

  66. Crabtree, G. R. Contingent genetic regulatory events in T lymphocyte activation. Science 243, 355–361 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. van Stipdonk, M. J., Lemmens, E. E. & Schoenberger, S. P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunol. 2, 423–429 (2001).

    Article  CAS  Google Scholar 

  69. Gett, A. V. & Hodgkin, P. D. A cellular calculus for signal integration by T cells. Nature Immunol. 1, 239–244 (2000).

    Article  CAS  Google Scholar 

  70. Lipsky, P. E. & Rosenthal, A. S. Macrophage-lymphocyte interaction. II. Antigen-mediated physical interactions between immune guinea pig lymph node lymphocytes and syngeneic macrophages. J. Exp. Med. 141, 138–154 (1975).

    Article  CAS  PubMed  Google Scholar 

  71. Inaba, K. & Steinman, R. M. Accessory cell-T lymphocyte interactions. Antigen-dependent and -independent clustering. J. Exp. Med. 163, 247–261 (1986).

    Article  CAS  PubMed  Google Scholar 

  72. Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13, 323–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Friedl, P. & Gunzer, M. Interaction of T cells with APCs: the serial encounter model. Trends Immunol. 22, 187–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Gretz, J. E., Anderson, A. O. & Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev. 156, 11–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Seder, R. A. & Paul, W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Sallusto, F., Mackay, C. R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors and memory cells. Science 290, 92–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of Th1, Th2 and nonpolarized T cells. Nature Immunol. 1, 311–316 (2000).

    Article  CAS  Google Scholar 

  82. Iezzi, G., Scheidegger, D. & Lanzavecchia, A. Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J. Exp. Med. 193, 987–994 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Manjunath, N. et al. A transgenic mouse model to analyze CD8(+) effector T cell differentiation in vivo. Proc. Natl Acad. Sci. USA 96, 13932–13937 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Mercado, R. et al. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165, 6833–6839 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  89. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Sad, S. & Mosmann, T. R. Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J. Immunol. 153, 3514–3522 (1994).

    CAS  PubMed  Google Scholar 

  91. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morgan, D. J., Kreuwel, H. T. & Sherman, L. A. Antigen concentration and precursor frequency determine the rate of CD8+ T cell tolerance to peripherally expressed antigens. J. Immunol. 163, 723–727 (1999).

    CAS  PubMed  Google Scholar 

  93. Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med. 193, 35–49 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Ingulli, E., Mondino, A., Khoruts, A. & Jenkins, M. K. In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J. Exp. Med. 185, 2133–2141 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ruedl, C., Koebel, P., Bachmann, M., Hess, M. & Karjalainen, K. Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J. Immunol. 165, 4910–4916 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Kamath, A. T. et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol. 165, 6762–6770 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Grufman, P., Wolpert, E. Z., Sandberg, J. K. & Karre, K. T cell competition for the antigen-presenting cell as a model for immunodominance in the cytotoxic T lymphocyte response against minor histocompatibility antigens. Eur. J. Immunol. 29, 2197–2204 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Kedl, R. M. et al. T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med. 192, 1105–1113 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith, A. L., Wikstrom, M. E. & Fazekas de St Groth, B. Visualizing T cell competition for peptide/MHC complexes: a specific mechanism to minimize the effect of precursor frequency. Immunity 13, 783–794 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, W., Anton, L. C., Bennink, J. R. & Yewdell, J. W. Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses. Immunity 12, 83–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Tang, H. L. & Cyster, J. G. Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284, 819–822 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Sallusto, F. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29, 1617–1625 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. McHeyzer-Williams, M. G. & Davis, M. M. Antigen-specific development of primary and memory T cells in vivo. Science 268, 106–111 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Karjalainen for critical reading and comments. A. L. is supported by the Helmut Horten Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Lanzavecchia or Federica Sallusto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanzavecchia, A., Sallusto, F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2, 487–492 (2001). https://doi.org/10.1038/88678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/88678

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing