Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The death effector domain protein family: regulators of cellular homeostasis

Abstract

The death effector domain (DED) occurs in proteins that regulate programmed cell death. Both pro- and anti-apoptotic proteins containing DEDs have been identified. For Fas and possibly other death receptors, homotypic DED interactions connect the Fas-associated death domain (FADD) protein to caspase-8 and caspase-10 to mediate formation of the death-inducing signal complex. This complex can be inhibited by other DED-containing proteins. Accumulating evidence now suggests that DED-containing proteins have additional roles in controlling pathways of cellular activation and proliferation. Thus, the DED defines a family of proteins that may be pivotal to cellular homeostasis by establishing a 'cell renewal set point' that coregulates proliferation and apoptosis in parallel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagram of the hexahelical structure of the DED.
Figure 2: Sequence alignment of DED-containing human and viral proteins.
Figure 3: The functions and interacting roles of DED-containing proteins.

K.R.

Figure 4: Model of the control of the cell renewal set point.

C.C.

Similar content being viewed by others

References

  1. Itoh, N. & Nagata, S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J. Biol. Chem. 268, 10932–10937 (1993).

    CAS  PubMed  Google Scholar 

  2. Tartaglia, L.A., Ayres, T.M., Wong, G.H. & Goeddel, D.V. A novel domain within the 55 kD TNF receptor signals cell death. Cell 74, 845–853 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Boldin, M.P. et al. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795–7798 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Chinnaiyan, A.M., O'Rourke, K., Tewari, M. & Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Fernandes-Alnemri, T. et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA 93, 7464–7469 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muzio, M., Stockwell, B.R., Stennicke, H.R., Salvasen, G.S. & Dixit, V.M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926–2930 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Kischkel, F.C. et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276, 46639–46646 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Martin, D.A., Siegel, R.M., Zheng, L. & Lenardo, M.J. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHα1) death signal. J. Biol. Chem. 273, 4345–4349 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, J., Chun, H.J., Wong, W., Spencer, D.M. & Lenardo, M.J. Caspase-10 is an initiator caspase in death receptor signaling. Proc. Natl. Acad. Sci. USA 98, 13884–13888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boldin, M.P., Goncharov, T.M., Goltsev, Y.V. & Wallach, D.I. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/Apo-1 and TNF receptor-induced cell death. Cell 85, 803–815 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Weber, C.H. & Vincenz, C. The death domain superfamily: a tale of two interfaces? Trends Biochem. Sci. 26, 475–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Eberstadt, M. et al. NMR structure and mutagenesis of the FADD (MORT1) death-effector domain. Nature 392, 941–945 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hofmann, K. The modular nature of apoptotic signaling proteins. Cell. Mol. Life Sci. 55, 1113–1128 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Martinon, F., Hofman, K. & Tschopp, J. The pyrin domain: a possible member of the death domain family implicated in apoptosis and inflammation. Curr. Biol. 11, R118–R120 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Hofmann, K., Bucher, P. & Tschopp, J. The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci. 22, 155–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Garvey, T.L. et al. Binding of FADD and caspase-8 to molluscum contagiosum virus MC159 v-FLIP is not sufficient for its antiapoptotic function. J. Virol. 76, 697–706 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu, S. & Yang, X. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. 275, 30761–30764 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, S.W., Ko, Y.G., Bang, S., Kim, K.S. & Kim, S. Death effector domain of a mammalian apoptosis mediator, FADD, induces bacterial cell death. Mol. Microbiol. 35, 1540–1549 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Siegel, R.M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Kaufmann, M. et al. Identification of a basic surface area of the FADD death effector domain critical for apoptotic signaling. FEBS Lett. 527, 250–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Weber, C.H. & Vincenz, C. A docking model of key components of the DISC complex: death domain superfamily interactions redefined. FEBS Lett. 492, 171–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Sneller, M.C. et al. Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 89, 1341–1348 (1997).

    CAS  PubMed  Google Scholar 

  26. Yang, X., Chang, H.Y. & Baltimore, D. Autoproteolytic activation of pro-caspases by oligomerization. Mol. Cell 1, 319–325 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Jaattela, M. & Tschopp, J. Caspase-independent cell death in T lymphocytes. Nat. Immunol. 4, 416–423.

  28. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Li, M. & Beg, A.A. Induction of necrotic-like cell death by tumor necrosis factor-α and caspase inhibitors: novel mechanism for killing virus-infected cells. J. Virol. 74, 7470–7477 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bertin, J. et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl. Acad. Sci. USA 94, 1172–1176 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu, S., Vincenz, C., Buller, M. & Dixit, V.M. A novel family of viral death effector domain-containing molecules that inhibit both CD95- and tumor necrosis factor receptor-1–induced apoptosis. J. Biol. Chem. 272, 9621–9624 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Thome, M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Garvey, T.L., Bertin, J., Siegel, R.M., Lenardo, M.J. & Cohen, J. The death effector domains (DEDs) of the molluscum contagiosum virus MC159 v-FLIP protein are not functionally interchangeable with each other or with the DEDs of caspase-8. Virology 300, 217–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Hu, S., Vincenz, C., Ni, J., Gentz, R. & Dixit, V.M. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1– and CD-95–induced apoptosis. J. Biol. Chem. 272, 17255–17257 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell. Biol. 21, 3964–3973 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Michaeu, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-κB signals induce the expression of c-FLIP. Mol. Cell. Biol. 21, 5299–5305 (2001).

    Article  Google Scholar 

  38. Thomas, R.K. et al. Constituitive expression of c-FLIP in Hodgkin and Reed-Sternberg cells. Amer. J. of Path. 160, 1521–1528 (2002).

    Article  CAS  Google Scholar 

  39. Chang, D.W. et al. c-FLIPL is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 21, 3704–3714 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lens, S. et al. The caspase 8 inhibitor c-FLIPL modulates T-cell receptor–induced proliferation but not activation-induced cell death of lymphoctyes. Mol. Cell. Biol. 22, 5419–5433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Condorelli, G. et al. PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene 18, 4409–4415 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Kitsberg, D. et al. Knock-out of the neural death effector domain protein PEA-15 demonstrates that its expression protects astrocytes from TNFα-induced apoptosis. J. Neuroscience 19, 8244–8251 (1999).

    Article  CAS  Google Scholar 

  43. Araujo, H., Danziger, N., Cordier, J., Glowinski, J. & Chneiweiss, H. Characterization of PEA-15, a major substrate for protein kinase C in astrocytes. J. Biol. Chem. 268, 5911–5920 (1993).

    CAS  PubMed  Google Scholar 

  44. Kubes, M., Cordier, J., Glowinski, J., Girault, J.A. & Chneiweiss, H. Endothelin induces a calcium-dependent phosphorylation of PEA-15 in intact astrocytes: identification of Ser104 and Ser116 phosphorylated, respectively, by protein kinase C and calcium/calmodulin kinase II in vitro. J. Neurochem. 71, 1307–1314 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Gomez-Angelats, M. & Cidlowski, J.A. Protein kinase C regulates FADD recruitment and death-inducing signaling complex formation in Fas/CD95-induced apoptosis. J. Biol. Chem. 276, 44944–44952 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Xiao, C., Yang, B.F., Asadi, N., Beguinot, F. & Hao, C. Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J. Biol. Chem. 277, 25020–25025 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Estelles, A., Charlton, C.A. & Blau, H.M. The phosphoprotein PEA-15 inhibits Fas- but increases TNF-R1 mediated caspase-8 activity and apoptosis. Dev. Biol. 216, 16–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Stegh, A.H. et al. DEDD, a novel death effector domain-containing protein, targeted to the nucleolus. EMBO J. 17, 5974–5986 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schickling, O., Stegh, A.H., Byrd, J. & Peter, M.E. Nuclear localization of DEDD leads to caspase-6 activation through its death effector domain and inhibition of RNA polymerase I dependent transcription. Cell Death Differ. 8, 1157–1161 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, J. et al. DEDD regulates degradation of intermediate filaments during apoptosis. J. Cell. Biol. 158, 1051–1066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roth, W., Stenner-Liewen, F., Pawlowski, K., Godzik, A. & Reed, J.C. Identification and characterization of DEDD2, a death effector domain-containing protein. J. Biol. Chem. 277, 7501–7508 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, L., Schickling, O., Peter, M.E. & Lenardo, M.J. The death effector domain-associated factor plays distinct regulatory roles in the nucleus and cytoplasm. J. Biol. Chem. 276, 31945–31952 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Ng, F.W. et al. p28 Bap31, a Bcl-2/Bcl-XL– and procaspase-8–associated protein in the endoplasmic reticulum. J. Cell Biol. 139, 327–338 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, H. et al. BAR: an apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc. Natl. Acad. Sci. USA 97, 2597–2602 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stegh, A.H. et al. Inactivation of caspase-8 on mitochondria of Bcl-xL-expressing MCF7-Fas cells: role for bifunctional apoptosis regulator protein. J. Biol. Chem. 277, 4351–4360 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Nguyen, M., Breckenridge, D.G., Ducret, A. & Shore, G.C. Caspase-resistant BAP31 inhibits Fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Cell. Biol. 20, 6731–6740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, B. et al. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria. J. Biol. Chem. advance online publication, 15 January 2003 (doi:10.1074/jbc.M209684200).

  58. Siegel, R.M. et al. Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger apoptosis. J. Cell. Biol. 141, 1243–1253 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, J., Cado, D., Chen, A., Kabra, N.H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Walsh, C.M. et al. A Role for FADD in T cell activation and development. Immunity 8, 439–449 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Newton, K., Harris, A.W., Bath, M.L., Smith, K.G. & Strasser, A. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymhocytes. EMBO J. 17, 706–718 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mack, A. & Hacker, G. Inhibition of caspase or FADD function blocks proliferation but not MAP kinase activation and interleukin-2 production during primary stimulation of T cells. Eur. J. Immunol. 32, 1986–1992 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Alam, A., Cohen, L.Y., Aouad, S. & Sekaly, R.P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med. 190, 1879–1890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kennedy, N.J., Kataoka, T., Tschopp, J. & Budd, R.C. Caspase activation is required for T cell proliferation. J. Exp. Med. 190, 1891–1896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chun, H. et al. Pleiotropic lymphocyte activation defects due to caspase-8 mutation causes human immunodeficiency. Nature 419, 395–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Chaudhary, P.M. et al. Activation of the NF-κB pathway by caspase 8 and its homologs. Oncogene 19, 4451–4460 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Hu, W.H., Johnson, H. & Shu, H.B. Activation of NF-κB by FADD, Casper, and Caspase 8. J. Biol. Chem. 275, 10838–10844 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, J. et al. Inherited caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signaling pathways. Curr. Biol. 10, 640–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Alderson, M.R. et al. Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med. 178, 1891–1896 (1993).

    Google Scholar 

  71. Ramos, J.W. et al. Death effector domain protein PEA-15 potentiates Ras activation of extracellular signal receptor-activated kinase by an adhesion-independent mechanism. Mol. Biol. Cell 11, 2863–2872 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Formstecher, E. et al. PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell 1, 239–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Gervais, F.G. et al. Recruitment and activation of caspase-8 by the Huntington-interacting protein Hip-1 and a novel partner Hippi. Nat. Cell Biol. 4, 95–105 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Shi for assistance with Figure 1, and M. Ahmed, L. Yu and H. Su for critical reading of the manuscript, valuable discussion and sharing of unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lenardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tibbetts, M., Zheng, L. & Lenardo, M. The death effector domain protein family: regulators of cellular homeostasis. Nat Immunol 4, 404–409 (2003). https://doi.org/10.1038/ni0503-404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0503-404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing