Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Delivering the kiss of death

Abstract

Cytotoxic T lymphocytes and natural killer cells kill their targets by secreting specialized granules that contain potent cytotoxic molecules. Through the study of rare immunodeficiency diseases in which this granule pathway of killing is impaired, proteins such as Rab27a have been identified as components of the secretory machinery of these killer cells. Recent evidence suggests that the destruction of activated lymphocytes through granule-mediated killing may be an important mechanism of immunological homeostasis. Although the process by which this occurs is not yet known, it is possible that events taking place at the immunological synapse may render the killer cell susceptible to fratricidal attack by other killer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The secretory synapse.
Figure 2: Transfer of membrane proteins at the synapse.
Figure 3: Acquisition of target-derived MHC class I.

Similar content being viewed by others

References

  1. Millard, P.J., Henkart, M.P., Reynolds, C.W. & Henkart, P.A. Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J. Immunol. 132, 3197–3204 (1984).

    CAS  PubMed  Google Scholar 

  2. Podack, E.R., Young, J.D. & Cohn, Z.A. Isolation and biochemical and functional characterization of perforin from cytolytic T cell granules. Proc. Natl. Acad. Sci. USA 82, 8629–8633 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shinkai, Y., Takio, K. & Okumura, K. Homology of perforin to the ninth component of complement (C9). Nature 334, 525–527 (1998).

    Google Scholar 

  4. Tschopp, J., Massom, D. & Stanley, K.K. Structural-functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322, 831–834 (1986).

    CAS  PubMed  Google Scholar 

  5. Sauer, H., Pratsch, L., Tschopp, J., Bhakdi, S. & Peters, R. Functional size of complement and perforin pores compared by confocal laser scanning microscopy and fluorescent microphotolysis. Biochim. Biophys. Acta 1063, 137–146 (1991).

    CAS  PubMed  Google Scholar 

  6. Henkart, M.P. & Henkart, P.A. Lymphocyte mediated cytolysis as a secretory phenomenon. Adv. Exp. Med. Biol. 146, 227–247 (1982).

    CAS  PubMed  Google Scholar 

  7. Lowin, B., Peitsch, M.C. & Tschopp, J. Perforin and granzymes: crucial effector molecules in cytolytic T lymphocyte and natural killer cell-mediated cytotoxicity. Curr. Top. Microbiol. Immunol. 198, 1–24 (1995).

    CAS  PubMed  Google Scholar 

  8. Shi, L., Kraut, R.P., Aebersold, R. & Greenberg, A.H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175, 553–566 (1992).

    CAS  PubMed  Google Scholar 

  9. Heusel, J.W., Wesselschmidt, R.L., Shresta, S., Russell, J.H. & Ley, T.J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    CAS  PubMed  Google Scholar 

  10. Nakajima, H., Park, H.L. & Henkart, P.A. Synergistic roles of granzymes A and B in mediating target cell death by rat basophilic leukemia mast cell tumours also expressing cytolysin/perforin. J. Exp. Med. 181, 1037–1046 (1995).

    CAS  PubMed  Google Scholar 

  11. Shiver, J.W. & Henkart, P.A. A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell 64, 1175–1181 (1991).

    CAS  PubMed  Google Scholar 

  12. Shiver, J.W., Su, L. & Henkart, P.A. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71, 315–322 (1992).

    CAS  PubMed  Google Scholar 

  13. Barry, M. & Bleackley, R.C. Cytotoxic T lymphocytes: all roads lead to death. Nat. Rev. Immunol. 2, 401–409 (2002).

    CAS  PubMed  Google Scholar 

  14. Beresford, P.J. et al. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J. Biol. Chem. 276, 43285–43293 (2001).

    CAS  PubMed  Google Scholar 

  15. Fan, Z. et al. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat. Immunol. 4, 145–153 (2003).

    CAS  PubMed  Google Scholar 

  16. Froelich, C.J. et al. New paradigm for lymphocyte granule mediated cytotoxicity. Targets bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J. Biol. Chem. 271, 29073–29079 (1996).

    CAS  PubMed  Google Scholar 

  17. Motyka, B. et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103, 491–500 (2000).

    CAS  PubMed  Google Scholar 

  18. Browne, K.A. et al. Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol. Cell. Biol. 19, 8604–8615 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Metkar, S.S. et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B–serglycin complexes into target cells without plasma membrane pore formation. Immunity 16, 417–428 (2002).

    CAS  PubMed  Google Scholar 

  20. Gartung, C., Braulke, T., Hasilik, A. & von Figura, K. Internalization of blocking antibodies against mannose-6-phosphate specific receptors. EMBO J. 4, 1725–1730 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez-Noriega, A., Grubb, J.H., Talkad, V. & Sly, W.S. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J. Cell Biol. 85, 839–852 (1980).

    CAS  PubMed  Google Scholar 

  22. Kuta, A.E., Reynolds, C.R. & Henkart, P.A. Mechanisms of lysis by large granular lymphocyte granule cytolysin: generation of a stable cytolysin-RBC intermediate. J. Immunol. 142, 4378–4384 (1989).

    CAS  PubMed  Google Scholar 

  23. Uellner, R. et al. Perforin is activated by proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J. 16, 7287–7296 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Winkler, U., Fraser, S.A. & Hudig, D. Perforin-enhancing protein, a low molecular weight protein of cytotoxic lymphocyte granules, enhances perforin lysis. Biochem. Biophys. Res. Commun. 236, 34–39 (1997).

    CAS  PubMed  Google Scholar 

  25. Sanderson, C.J. The mechanism of T cell mediated cytotoxicity. I. The release of different cell components. Proc. R. Soc. Lond. B 192, 221–239 (1976).

    CAS  PubMed  Google Scholar 

  26. Kupfer, A., Singer, S.J. & Dennert, G. On the mechanism of unidirectional killing in mixtures of two cytotoxic T lymphocytes. Unidirectional polarization of cytoplasmic organelles and the membrane-associated cytoskeleton in the effector cell. J. Exp. Med. 163, 489–498 (1986).

    CAS  PubMed  Google Scholar 

  27. Balaji, K.N., Schaschke, N., Machleidt, W., Catalfamo, M. & Henkart, P.A. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med. 196, 493–503 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kataoka, T. et al. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and γ-irradiation. J. Immunol. 161, 3936–3942 (1998).

    CAS  PubMed  Google Scholar 

  29. Hirst, C.E. et al. The intracellular Granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. J. Immunol. 170, 805–815 (2003).

    CAS  PubMed  Google Scholar 

  30. Burkhardt, J.K., Hester, S., Lapham, C.K. & Argon, Y. The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J. Cell Biol. 111, 2327–2340 (1990).

    CAS  PubMed  Google Scholar 

  31. Peters, P.J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109 (1991).

    CAS  PubMed  Google Scholar 

  32. Geiger, B., Rosen, D. & Berke, G. Spatial relationships of microtubule organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J. Cell Biol. 95, 137–143 (1982).

    CAS  PubMed  Google Scholar 

  33. Kupfer, A. & Dennert, G. Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J. Immunol. 133, 2762–2766 (1984).

    CAS  PubMed  Google Scholar 

  34. Kupfer, A., Dennert, G. & Singer, S.J. The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J. Mol. Cell. Immunol. 2, 37–49 (1985).

    CAS  PubMed  Google Scholar 

  35. Allan, V.J., Thompson, H.N. & McNiven, M.A. Motoring around the Golgi. Nat. Cell Biol. 4, E236–E242 (2002).

    CAS  PubMed  Google Scholar 

  36. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    CAS  PubMed  Google Scholar 

  37. van der Merwe, P.A. Formation and function of the immunological synapse. Curr. Opin. Immunol. 14, 293–298 (2002).

    CAS  PubMed  Google Scholar 

  38. Lyubchenko, T.A., Wurth, G.A. & Zweifach, A. Role of calcium influx in cytotoxic T lymphocyte lytic granule exocytosis during target cell killing. Immunity. 15, 847–859 (2001).

    CAS  PubMed  Google Scholar 

  39. Kuhn, J.R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121 (2002).

    CAS  PubMed  Google Scholar 

  40. Perou, C.M. et al. Identification of the murine beige gene by YAC complementation and positional cloning. Nat. Genet. 13, 303–308 (1996).

    CAS  PubMed  Google Scholar 

  41. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173–176 (2000).

    CAS  PubMed  Google Scholar 

  42. Wilson, S.M. et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl. Acad. Sci. USA 97, 7933–7938 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Detter, J.C. et al. Rab geranylgeranyl transferase α mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis Proc. Natl. Acad. Sci. USA 97, 4144–4149 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stepp, S.E. et al. Perforin gene defects in familial haemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999).

    CAS  PubMed  Google Scholar 

  45. Griffiths, G.M. Albinism and immunity: what's the link? Curr. Mol. Med. 2, 479–483 (2002).

    CAS  PubMed  Google Scholar 

  46. Stinchcombe, J.C. & Griffiths, G.M. Regulated secretion from hemopoietic cells. J. Cell Biol. 147, 1–6 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Haddad, E.K., Wu, X., Hammer, J.A. & Henkart, P.A. Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. J. Cell Biol. 152, 835–842 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stinchcombe, J.C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hume, A.N. et al. Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J. Cell Biol. 152, 795–808 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, X., Wang, F., Rao, K., Sellers, J.R. & Hammer, J.A. Rab27a is an essential component of melanosome receptor for myosin Va. Mol. Biol. Cell. 13, 1735–1749 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pastural, E. et al. Two genes are responsible for Griscelli syndrome at the same 15q21 locus. Genomics 63, 299–306 (2000).

    CAS  PubMed  Google Scholar 

  52. Hume, A.N. et al. The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic 3, 193–202 (2002).

    CAS  PubMed  Google Scholar 

  53. Fukuda, M., Kuroda, T.S. & Mikoshiba, K. Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: implications of a tripartite protein complex for melanosome transport. J. Biol. Chem. 277, 12432–12436 (2002).

    CAS  PubMed  Google Scholar 

  54. Kuroda, T.S., Fukuda, M., Ariga, H. & Mikoshiba, K. Synaptotagmin-like protein 5: a novel Rab27A effector with C-terminal tandem C2 domains. Biochem. Biophys. Res. Commun. 293, 899–906 (2002).

    CAS  PubMed  Google Scholar 

  55. Strom, M., Hume, A.N., Tarafder, A.K., Barkagianni, E. & Seabra, M.C. A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J. Biol. Chem. 277, 25423–25430 (2002).

    CAS  PubMed  Google Scholar 

  56. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science. 279, 580–585 (1998).

    CAS  PubMed  Google Scholar 

  57. Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol. 11, 1680–1685 (2001).

    CAS  PubMed  Google Scholar 

  58. Lebrand, C. et al. Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J. 21, 1289–300 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ward, D.M., Griffiths, G.M., Stinchcombe, J.C. & Kaplan, J. Analysis of the lysosomal storage disease Chediak-Higashi syndrome. Traffic 1, 816–822 (2000).

    CAS  PubMed  Google Scholar 

  60. Baetz, K., Isaaz, S. & Griffiths, G.M. Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J. Immunol. 154, 6122–6131 (1995).

    CAS  PubMed  Google Scholar 

  61. Barbosa, M.D. et al. Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature 382, 262–265 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stinchcombe, J.C., Page, L.J. & Griffiths, G.M. Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak-Higashi syndrome patients. Traffic 1, 435–444 (2000).

    CAS  PubMed  Google Scholar 

  63. Tchernev, V.T. et al. The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins. Mol. Med. 8, 56–64 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. de Saint Basile, G. & Fischer, A. The role of cytotoxicity in lymphocyte homeostasis. Curr. Opin. Immunol. 13, 549–554 (2001).

    CAS  PubMed  Google Scholar 

  65. Arico, M. et al. Haemophagocytic lymphohistiocytosis: proposal of a diagnostic algorithm based on perforin expression. Br. J. Haematol. 119, 180–188 (2002).

    PubMed  Google Scholar 

  66. Feldmann, J. et al. Functional consequences of perforin gene mutations in 22 patients with familial haemophagocytic lymphohistiocytosis. Br. J. Haematol. 111, 965–972 (2002).

    Google Scholar 

  67. Goransdotter Ericson, K. et al. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis. Am J. Hum. Genet. 68, 590–597 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Suga, N. et al. Perforin defects of primary haemophagocytic lymphohistiocytosis in Japan. Br. J. Haematol. 116, 346–349 (2002).

    CAS  PubMed  Google Scholar 

  69. Lacorazza, H.D. et al. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17, 437–449 (2002).

    CAS  PubMed  Google Scholar 

  70. Stepp, S.E., Mathew, P.A., Bennett, M., de Saint-Basile, G. & Kumar, V. Perforin: more than just an effector molecule. Immunol. Today 21, 254–256 (2000).

    CAS  PubMed  Google Scholar 

  71. Moretta, L., Moretta, A., Hengartner, H. & Zinkernagel, R.M. On the pathogenesis of perforin defects and related immunodeficiencies. Immunol. Today 21, 593–594 (2000).

    CAS  PubMed  Google Scholar 

  72. Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R.M. & Hengartner, H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 14, 207–232 (1996).

    CAS  PubMed  Google Scholar 

  73. Lowin, B., Hahne, M., Mattman, C. & Tschopp, J. Cytolytic T cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370, 650–652 (1994).

    CAS  PubMed  Google Scholar 

  74. Walsh, C.M. et al. Immune function in mice lacking the perforin gene. Proc. Natl. Acad. Sci. USA 91, 10854–10858 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol. 73, 2527–2536 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kagi, D., Odermatt, B. & Mak T.W. Homeostatic regulation of CD8+ T cells by perforin. Eur. J. Immunol. 29, 3262–3272 (1999).

    CAS  PubMed  Google Scholar 

  77. Walden, P.R. & Eisen, H.N. Cognate peptides induce self-destruction of CD8+ cytolytic T lymphocytes. Proc. Natl. Acad. Sci. USA 87, 9015–9019 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang, J.F. et al. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952–954 (1999).

    CAS  PubMed  Google Scholar 

  79. Hwang, I. et al. T cells can use either T cell receptor or CD28 receptors to absorb and internalise cell surface molecules derived from antigen-presenting cells. J. Exp. Med. 191, 1137–1148 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Batista, F.D., Iber, D. & Neuberger, M.S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).

    CAS  PubMed  Google Scholar 

  81. Carlin, L.M., Eleme, K., McCann, F.E. & Davis, D.M. Intercellular transfer and supramolecular organization of human leucocyte antigen C at inhibitory natural killer cell immune synapses. J. Exp. Med. 194, 1507–17 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sjostrom, A. et al. Acquisition of external major histocompatibility complex class I molecules by natural killer cells expressing inhibitory Ly49 receptors. J. Exp Med. 194, 1519–1530 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tabiasco, J. et al. Active trans-synaptic capture of membrane fragments by natural killer cells. Eur. J. Immunol. 32, 1502–1508 (2002).

    CAS  PubMed  Google Scholar 

  84. Espinosa, E., Tabiasco, J., Hudrisier, D. & Fournie, J.J. Synaptic transfer by human gamma delta T cells stimulated with soluble or cellular antigens. J. Immunol. 168, 6336–6343 (2002).

    CAS  PubMed  Google Scholar 

  85. Hudrisier, D., Riond, J., Mazarguil, H., Gairin, J.E. & Jolly, E. Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR-signaling dependent manner. J. Immunol. 166, 3645–3649 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Bossi and J. Stinchcombe for Figures 13, and J. Kaufman for comments on the manuscript. The work of our laboratory is funded by grants from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M. Griffiths.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trambas, C., Griffiths, G. Delivering the kiss of death. Nat Immunol 4, 399–403 (2003). https://doi.org/10.1038/ni0503-399

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0503-399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing