Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A point mutation in CD28 distinguishes proliferative signals from survival signals

Abstract

Upon interaction with its ligand, B7, CD28 becomes phosphorylated on tyrosines. One tyrosine in particular (Y170 in mouse CD28, Y173 in human CD28) has received much attention. This is because it permits CD28 to recruit SH2-containing signaling molecules, including phosphoinositide 3 kinase, Grb2 and Gads. Using mice we employed a transgenic approach to express a tyrosine→phenylalanine mutant form of CD28 that uncouples these SH2-mediated interactions from CD28. The CD28 mutant is unable to up-regulate expression of the prosurvival protein Bcl-xL, rendering the T cells more susceptible to radiation-induced death. Nonetheless, this mutated form of CD28 still prevents the induction of anergy and promotes T cell proliferation, interleukin 2 secretion and B cell help. Thus, we describe a single point mutation within the CD28 cytoplasmic domain that uncouples signals required for proliferation and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of CD28 transgenic mice.
Figure 2: CD28 Y170F Tg-1 is unable to bind to the p85 subunit of PI3K or couple to the PI3K target PKB.
Figure 3: CD28-dependent proliferation of Y170F mutant lymph node cells.
Figure 4: CD28 Y170F responds normally to peptide antigen.
Figure 5: CD28 Y170F prevents the induction of anergy.
Figure 6: The YMNM motif is required for CD28-dependent up-regulation of Bcl-xL and for CD28-promotion of radiation resistance.
Figure 7: The Y170F mutant of CD28 supports an antigen-specific humoral immune response.

Similar content being viewed by others

References

  1. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  2. King, P. D. et al. Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK. J. Immunol. 158, 580–590 (1997).

    CAS  PubMed  Google Scholar 

  3. Raab, M. et al. p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: Implications for T-cell costimulation. Proc. Natl Acad. Sci. USA 92, 8891–8895 (1995).

    Article  CAS  Google Scholar 

  4. Sadra, A. et al. Identification of tyrosine phosphorylation sites in the CD28 cytoplasmic domain and their role in the costimulation of Jurkat T cells. J. Immunol. 162, 1966–1973 (1999).

    CAS  PubMed  Google Scholar 

  5. Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369, 327–329 (1994).

    Article  CAS  Google Scholar 

  6. Hutchcroft, J. E. & Bierer, B. E. Activation-dependent phosphorylation of the T-lymphocyte surface receptor CD28 and associated proteins. Proc. Natl Acad. Sci. USA 91, 3260–3264 (1994).

    Article  CAS  Google Scholar 

  7. Prasad, K. V. S. et al. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc. Natl Acad. Sci. USA. 91, 2834–2838 (1994).

    Article  CAS  Google Scholar 

  8. Stein, P. H., Fraser, J. D. & Weiss, A. The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol. Cell. Biol. 14, 3392–3402 (1994).

    Article  CAS  Google Scholar 

  9. Truitt, K. E., Hicks, C. M. & Imboden, J. B. Stimulation of CD28 triggers an association between CD28 and phosphatidylinositol 3-kinase in Jurkat T cells. J. Exp. Med. 179, 1071–1076 (1994).

    Article  CAS  Google Scholar 

  10. August, A. & Dupont, B. CD28 of T lymphocytes associates with phosphatidylinositol 3-kinase. Int. Immunol. 6, 769–774 (1994).

    Article  CAS  Google Scholar 

  11. Schneider, H., Cai, Y.-C., Prasad, K. V. S., Shoelson, S. E. & Rudd, C. E. T cell antigen CD28 binds to the GRB-2/SOS complex, regulators of p21ras. Eur. J. Immunol. 25, 1044–1050 (1995).

    Article  CAS  Google Scholar 

  12. Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. & Waterfield, M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends. Biochem. Sci. 22, 267–272 (1997).

    Article  CAS  Google Scholar 

  13. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  Google Scholar 

  14. Vanhaesebroeck, B. & Waterfield, M. D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell. Res. 253, 239–254 (1999).

    Article  CAS  Google Scholar 

  15. Cai, Y. C. et al. Selective CD28pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86-CD28-mediated costimulation. Immunity 3, 417–426 (1995).

    Article  CAS  Google Scholar 

  16. Ward, S. G., Wilson, A., Turner, L., Westwick, J. & Sansom, D. M. Inhibition of CD28-mediated T cell costimulation by the phosphoinositide 3-kinase inhibitor wortmannin. Eur. J. Immunol. 25, 526–532 (1995).

    Article  CAS  Google Scholar 

  17. Lahesmaa, R. et al. Modulation of the Grb2-associated protein complex in human CD4+ T cells by receptor activation. J. Immunol. 155, 3815–3822 (1995).

    CAS  PubMed  Google Scholar 

  18. Zell, T., Hunt, S. R., Mobley, J. L., Finkelstein, L. D. & Shimizu, Y. CD28-mediated up-regulation of β1-integrin adhesion involves phosphatidylinositol 3-kinase. J. Immunol. 156, 883–886 (1996).

    CAS  PubMed  Google Scholar 

  19. Shi, J., Cinek, T., Truitt, K. E. & Imboden, J. B. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, blocks antigen- mediated, but not CD3 monoclonal antibody-induced, activation of murine CD4+ T cells. J. Immunol. 158, 4688–4695 (1997).

    CAS  PubMed  Google Scholar 

  20. Collette, Y., Razanajaona, D., Ghiotto, M. & Olive, D. CD28 can promote T cell survival through a phosphatidylinositol 3- kinase-independent mechanism. Eur. J. Immunol. 27, 3283–3289 (1997).

    Article  CAS  Google Scholar 

  21. Cefai, D. et al. CD28 receptor endocytosis is targeted by mutations that disrupt phosphatidylinositol 3-kinase binding and costimulation. J. Immunol. 160, 2223–2230 (1998).

    CAS  PubMed  Google Scholar 

  22. Crooks, M. E. C. et al. CD28-Mediated Costimulation in the Absence of Phosphatidylinositol 3-Kinase Association and Activation. Mol. Cell. Biol. 15, 6820–6828 (1995).

    Article  CAS  Google Scholar 

  23. Truitt, K. E., Nagel, T., Suen, L. F. & Imboden, J. B. Structural requirements for CD28-mediated costimulation of IL-2 production in Jurkat T cells. J. Immunol. 156, 4539–4541 (1996).

    CAS  PubMed  Google Scholar 

  24. Truitt, K. E. et al. CD28 delivers costimulatory signals independently of its association with phosphatidylinositol 3-kinase. J. Immunol. 155, 4702–4710 (1995).

    CAS  PubMed  Google Scholar 

  25. Barz, C., Nagel, T., Truitt, K. E. & Imboden, J. B. Mutational analysis of CD28-mediated costimulation of Jun-N-terminal kinase and IL-2 production. J. Immunol. 161, 5366–5372 (1998).

    CAS  PubMed  Google Scholar 

  26. Lu, Y., Phillips, C. A. & Trevillyan, J. M. Phosphatidylinositol 3-kinase activity is not essential for CD28 costimulatory activity in Jurkat T cells: studies with a selective inhibitor wortmannin. Eur. J. Immunol. 25, 533–537 (1995).

    Article  CAS  Google Scholar 

  27. Ueda, Y. et al. Both CD28 ligands CD80 (B7-1) and CD86 (B7-2) activate phosphatidylinositol 3-kinase, and wortmannin reveals heterogeneity in the regulation of T cell IL-2 secretion. Int. Immunol. 7, 957–966 (1995).

    Article  CAS  Google Scholar 

  28. Ellis, J. H. et al. GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28. J. Immunol. 164, 5805–5814 (2000).

    Article  CAS  Google Scholar 

  29. Downward, J. Control of ras activation. Cancer Surv. 27, 87–100 (1996).

    CAS  PubMed  Google Scholar 

  30. Kim, H. H., Tharayil, M. & Rudd, C. E. Growth factor receptor-bound protein 2 SH2/ SH3 domain binding to CD28 and its role in co-signaling. J. Biol. Chem. 273, 296–301 (1998).

    Article  CAS  Google Scholar 

  31. Liu, S. K., Fang, N., Koretzky, G. A. & McGlade, C. J. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–75 (1999).

    Article  CAS  Google Scholar 

  32. Lee, N. A., Loh, D. Y. & Lacy, E. CD8 surface levels alter the fate of α/β T cell receptor-expressing thymocytes in transgenic mice. J. Exp. Med. 175, 1013–1025 (1992).

    Article  CAS  Google Scholar 

  33. Pages, F. et al. Two distinct intracytoplasmic regions of the T-cell adhesion molecule CD28 participate in phosphatidylinositol 3-kinase association. J. Biol. Chem. 271, 9403–9409 (1996).

    Article  CAS  Google Scholar 

  34. Okkenhaug, K. & Rottapel, R. Grb2 Forms an Inducible Protein Complex with CD28 through a Src Homology 3 Domain-Proline Interaction. J. Biol. Chem. 273, 21194–21202 (1998).

    Article  CAS  Google Scholar 

  35. Vanhaesebroeck, B. & Alessi, D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kundig, T. M. et al. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 5, 41–52 (1996).

    Article  CAS  Google Scholar 

  37. Lucas, P. J., Negishi, I., Nakayama, K., Fields, L. E. & Loh, D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768 (1995).

    CAS  PubMed  Google Scholar 

  38. Sperling, A. I. et al. CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J. Immunol. 157, 3909–3917 (1996).

    CAS  PubMed  Google Scholar 

  39. Boise, L. H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL . Immunity 3, 87–98 (1995).

    Article  CAS  Google Scholar 

  40. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  Google Scholar 

  41. Ferguson, S. E., Han, S., Kelsoe, G. & Thompson, C. B. CD28 is required for germinal center formation. J. Immunol. 156, 4576–4581 (1996).

    CAS  PubMed  Google Scholar 

  42. Nishina, H. et al. Impaired CD28-mediated interleukin 2 production and proliferation in stress kinase SAPK/ERK1 kinase (SEK1)/mitogen-activated protein kinase kinase 4 (MKK4)-deficient T lymphocytes. J. Exp. Med. 186, 941–953 (1997).

    Article  CAS  Google Scholar 

  43. Dahl, A. M. et al. Expression of Bcl-XL restores cell survival, but not proliferation and effector differentiation, in CD28-deficient T lymphocytes. J. Exp. Med. 191, 2031–2038 (2000).

    Article  CAS  Google Scholar 

  44. Jones, R. G. et al. Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-XL levels in vivo. J. Exp. Med. 191, 1721–1734 (2000).

    Article  CAS  Google Scholar 

  45. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  Google Scholar 

  46. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  Google Scholar 

  47. Marengere, L. E. et al. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J. Immunol. 159, 3220–3229 (1997).

    CAS  PubMed  Google Scholar 

  48. Yang, W. C., Ghiotto, M., Barbarat, B. & Olive, D. The role of Tec protein-tyrosine kinase in T cell signaling. J. Biol. Chem. 274, 607–617 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ellis and A. Huang at the Hospital for Sick Children Transgenic Facility, Toronto for micro-injecting DNA and A. Veillette, S. Ilangumaran and B. Vanhaesebroeck for advice and for reviewing the manuscript.. Supported by grants from the Arthritis Society of Canada and the Medical Research Council (to R. R.) and the National Cancer Institute (to P. S. O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Rottapel.

Supplementary information

Web Figure 1.

The YMNM motif is required for CD28-dependent up-regulation of Bcl-xL. Lymph node cells from C57BL/6, CD28-/-, WT Tg and Y170F Tg –1 were left unstimulated or stimulated with soluble anti-CD3 (1 μg/ml) and anti-CD28 (1 μg/ml) for 6, 10, 22, 34 and 46 h. Cells were collected, washed in PBS and lysed. Proteins were resolved by SDS-PAGE, transferred to PVDF membranes and probed with anti–Bcl-xL and anti-actin. (JPG 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okkenhaug, K., Wu, L., Garza, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat Immunol 2, 325–332 (2001). https://doi.org/10.1038/86327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing