Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defining the specific physiological requirements for c-Myc in T cell development

Abstract

c-Myc is associated with cell growth and cycling in many tissues and its deregulated expression is causally implicated in cancer, particularly lymphomagenesis. However, the contribution of c-Myc to lymphocyte development is unresolved. We show here that the formation of normal lymphocytes by c-Myc−/− cells is selectively defective. c-Myc−/− cells are inefficient, in an age-dependent manner, at populating the thymus, and subsequent thymocyte maturation is ineffective: they fail to grow and proliferate normally at the late double-negative (DN) CD4CD8 stage. Because N-Myc expression in thymocytes usually declines at the late DN stage, these results confirm that the nonredundant contributions of Myc family members to development are related to their distinct patterns of developmental gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of c-Myc−/− and c-Myc+/− ES cells.
Figure 2: c-Myc−/− cells do not efficiently form lymphocytes in RAG-1−/− chimeras.
Figure 3: c-Myc−/− cells do not efficiently complete thymocyte differentiation in adult RAG-1−/− chimeras.
Figure 4: c-Myc−/− cells do not contribute effectively to the bone marrow.
Figure 5: Analysis of c-Myc+/− and c-Myc−/− fetal thymocytes at E16.5.
Figure 6: Maturation of c-Myc−/− thymocytes.
Figure 7: c-Myc and N-Myc gene expression in C57BL/6J thymocyte subsets.

Similar content being viewed by others

References

  1. Blackwood, E. M. & Eisenman, R. N. Max: A Helix-Loop-Helix Zipper Protein That Forms a Sequence-Specific DNA-Binding Complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  Google Scholar 

  2. Evan, G. I. & Littlewood, T. D. The role of c-myc in cell growth. Curr. Opin. Gen. Dev. 3, 44–49 (1993).

    Article  CAS  Google Scholar 

  3. Dang, C. V. et al. Function of the c-Myc Oncogenic transcription Factor. Exp. Cell Res. 253, 63–77 (1999).

    Article  CAS  Google Scholar 

  4. Malynn, B. A. et al. N-myc can functionally replace c-myc in murine development, cellular growth and differentiation. Genes Dev. 14, 1390–1399 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Berns, K., Hijmans, E. M., Koh, E., Daley, G. Q. & Bernards, R. A genetic screen to identify genes that rescue the slow growth phenotype of c-myc null fibroblasts. Oncogene 19, 3330–3334 (2000).

    Article  CAS  Google Scholar 

  6. Hatton, K. S. et al. Expression and Activity of L-Myc in Normal Mouse Development. Mol. Cell. Biol. 16, 1794–1804 (1996).

    Article  CAS  Google Scholar 

  7. Charron, J. et al. Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev. 6, 2248–2257 (1992).

    Article  CAS  Google Scholar 

  8. Stanton, B. R., Perkins, A. S., Tessarollo, L., Sassoon, D. A. & Parada, L. F. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev. 6, 2235–2247 (1992).

    Article  CAS  Google Scholar 

  9. Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R. & Bradley, A. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev. 7, 671–682 (1993).

    Article  CAS  Google Scholar 

  10. Sawai, S. et al. Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development 117, 1445–1455 (1993).

    CAS  PubMed  Google Scholar 

  11. Zimmerman, K. A. et al. Differential expression of myc family genes during murine development. Nature 319, 780–783 (1986).

    Article  CAS  Google Scholar 

  12. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35, 603–610 (1983).

    Article  CAS  Google Scholar 

  13. Smith, R. K., Zimmerman, K., Yancopoulos, G. D., Ma, A. & Alt, F. W. Transcriptional Down-Regulation of N-myc Expression during B-Cell Development. Mol. Cell. Biol. 12, 1578–1584 (1992).

    Article  CAS  Google Scholar 

  14. Miyazaki, T. Three Distinct IL-2 Signaling Pathways Mediated by bcl-2, c-myc and Lck Cooperate in Hematopoietic Cell Proliferation. Cell 81, 223–231 (1995).

    Article  CAS  Google Scholar 

  15. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  CAS  Google Scholar 

  16. Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    Article  CAS  Google Scholar 

  17. Leder, A., Pattengale, P. K., Kuo, A., Stewart, T. A. & Leder, P. Consequences of Widespread Deregulation of the c-myc Gene in Transgenic Mice: Multiple Neoplasms and Normal Development. Cell 45, 485–495 (1986).

    Article  CAS  Google Scholar 

  18. Gardiner, E. M., Richman, A. & Hayday, A. Myc activation: a case of complex corruption. Semin. Virol. 2, 341–350 (1991).

    CAS  Google Scholar 

  19. Felsher, D. W. & Bishop, J. M. Reversible Tumorigenesis by MYC in Hematopoietic Lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  Google Scholar 

  20. Hoffman, E. S. et al. Productive T-cell receptor β-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 10, 948–962 (1996).

    Article  CAS  Google Scholar 

  21. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T-cell receptor. Ann. Rev. Immunol. 15, 433–452 (1997).

    Article  CAS  Google Scholar 

  22. Newton, K., Harris, A. W. & Strasser, A. FASS/MORTI regulates the pre-TCR checkpoint and can function as a tumour suppressor. EMBO J. 19, 931–40 (2000).

    Article  CAS  Google Scholar 

  23. Pearson, R. & Weston, K. c-Myb regulates the proliferation of immature thymocytes following β-selection. EMBO J. 19, 6112–6120 (2000).

    Article  CAS  Google Scholar 

  24. Okamura, R. M. et al. Redundant Regulation of T Cell Differentiation and TCRα Gene Expression by the Transcription Factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).

    Article  CAS  Google Scholar 

  25. Colcucci, F. A new look at syk in αβ and γδ T cell development using chimeric mice with a low competitive hematopoietic environment. J. Immunol. 164, 5140–5145 (2000).

    Article  Google Scholar 

  26. Mallick-Wood, C. A. et al. Disruption of epithelial γδ T cell repertoires by mutation of the Syk tyrosine kinase. Proc. Natl Acad. Sci. USA 93, 9704–9709 (1996).

    Article  CAS  Google Scholar 

  27. Mombaerts, P. et al. RAG-1-Deficient Mice Have No Mature B and T Lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  28. Lefrancois, L. Extrathymic differentiation of intraepithelial lymphocytes, generation of a separate and unequal T-cell repertoire. Immunol. Today 12, 436–438 (1991).

    Article  CAS  Google Scholar 

  29. Klein, M. Jr Peripheral engraftment of fetal intestine into athymic mice sponsors T-cell development: direct evidence for thymopoietic function of murine small intestine. J. Exp. Med. 176, 1365–1373 (1992).

    Article  Google Scholar 

  30. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  Google Scholar 

  31. Mallick, C. A., Dudley, E. C., Viney, J. L., Owen, M. J. & Hayday, A. C. Rearrangement and Diversity of T Cell Receptor β Chain Genes in Thymocytes: A Critical Role for the β Chain in Development. Cell 73, 513–519 (1993).

    Article  CAS  Google Scholar 

  32. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  Google Scholar 

  33. Shores, E. W., Sharrow, S. O., Uppenkamp, I. & Singer, A. T cell receptor-negative thymocytes from SCID mice can be induced to enter the CD4/CD8 differentiation pathway. Eur. J. Immunol. 20, 69–77 (1990).

    Article  CAS  Google Scholar 

  34. Ikuta, K. et al. A developmental Switch in Thymic Lymphocyte Maturation Potential Occurs at the Level of Hematopoietic Stem Cells. Cell 62, 863–874 (1990).

    Article  CAS  Google Scholar 

  35. Dudley, E. C., Petrie, H. T., Shah, L. M., Owen, M. J. & Hayday, A. C. T cell receptor β chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1, 83–93 (1994).

    Article  CAS  Google Scholar 

  36. Broussard-Diehl, C., Bauer, S. R. & Scheuermann, R. H. A Role for c-myc in the Regulation of Thymocyte Differentiation and Possibly Positive Selection. J. Immunol. 156, 3141–3150 (1996).

    CAS  PubMed  Google Scholar 

  37. Alt, F. W. The human myc gene family. Cold Spring Harb. Symp. Quant. Biol. 51, 931–941 (1986).

    Article  CAS  Google Scholar 

  38. Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Development Potential and Dynamic Behavior of Hematopoietic Stem Cells. Cell 45, 917–927 (1986).

    Article  CAS  Google Scholar 

  39. Wang, J., Xie, S., Allan, D., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev. 12, 1769–1774 (1998).

    Article  CAS  Google Scholar 

  40. Blasco, M. A. & et al. telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  Google Scholar 

  41. Moreno de Alboran, I. M. et al. Analysis of c-Myc function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).

    Article  Google Scholar 

  42. Passoni, L. et al. Intrathymic δ Selection Events in γδ Cell Development. Immunity 7, 83–95 (1997).

    Article  CAS  Google Scholar 

  43. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc Regulates Cellular Growth during Development. Cell 98, 779–790 (1999).

    Article  CAS  Google Scholar 

  44. Vlach, J., Hennecke, S., Alevizopouolos, K., Conti, D. & Amati, B. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J. 15, 6595–6604 (1996).

    Article  CAS  Google Scholar 

  45. von Boehmer, H. et al. Crucial function of the pre-T-cell receptor (TCR) in TCRβ selection, TCR β allelic exclusion and αβ versus γδ lineage commitment. Immunol. Rev. 165, 111–119 (1998).

    Article  CAS  Google Scholar 

  46. O'Hagan, R. C. et al. Myc-enhanced expression of Cul1 promotes ubiquitin-dependent proteolysis and cell cycle progression. Genes Dev. 14, 2185–2191 (2000).

    Article  CAS  Google Scholar 

  47. Voll, R. E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T-lymphocyte development. Immunity 13, 677–689 (2000).

    Article  CAS  Google Scholar 

  48. Seckinger, P., Milili, M., Schiff, C. & Fourgereau, M. Interleukin-7 regulates c-myc expression in murine T cells and thymocytes: a role for tyrosine kinase(s) and calcium mobilization. Eur. J. Immunol. 24, 716–722 (1994).

    Article  CAS  Google Scholar 

  49. Morrow, M. A., Lee, G., Gillis, S., Yancopoulos, G. D. & Alt, F. W. Interleukin-7 induces N-myc and c-myc expression in normal precursor B lymphocytes. Genes Dev. 6, 61–70 (1992).

    Article  CAS  Google Scholar 

  50. von-Freeden-Jeffry, U. et al. Lymphopenia in Interleukin (IL)-7 Gene-deleted Mice Identifies IL-7 as a Nonredundant Cytokine. J. Exp. Med. 1995, 1519–1526 (1995).

    Article  Google Scholar 

  51. Peschon, J. J. et al. Early Lymphocyte Expansion Is Severely Impaired in Interleukin 7 Receptor-deficient Mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  52. Maki, K. et al. Interleukin 7 receptor-deficient mice lack γδ T cells. Proc. Natl Acad. Sci. USA 93, 7172–7177 (1996).

    Article  CAS  Google Scholar 

  53. Papaioannou, V. & Johnson, R. in Gene Targeting: A practical approach (eds Rickwood, D. & Hames, B.D.) 107–146 (Oxford University Press, New York, 1993).

    Google Scholar 

  54. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: An assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA 90, 4528–4532 (1993).

    Article  CAS  Google Scholar 

  55. Dudley, E. C., Girardi, M., Owen, M. J. & Hayday, A. C. αβ and γδ T cells can share a late common precursor. Curr. Biol. 5, 659–669 (1995).

    Article  CAS  Google Scholar 

  56. Scheuermann, R. H. & Bauer, S. R. Polymerase Chain Reaction-Based mRNA Quantification Using An Internal Standard: Analysis of Oncogene Expression. Meth. Enzymol. 218, 446–473 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Barber, R. Carbone, J. Cridland, S. Maher, J. McGrath, D. Schatz, T. Taylor, R. Tigelaar, W. Turnbull, E. Hoffman, L. Passoni, S. John, S. Roberts, M. Owen, J. Lewis, S. Creighton and, particularly, R. Sullo. Supported by the Wellcome Trust and by National Institutes of Health grant GM37759 (to A. C. H.). N. C. D. is supported by MSTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian C. Hayday.

Supplementary information

Web Table 1.

TCRβ and TCRδ gene rearrangements in thymocytes of c-Myc−/− RAG-1−/− chimeras (DOC 32 kb)

Web Table 2.

TCRγ gene rearrangements in thymocytes of c-Myc−/−RAG-1−/− chimeras, arranged according to germline contributions from V and J segments and presumed template-independent N or P nucleotides (DOC 21 kb)

Web Table 3.

The frequencies of in-frame TCRβ gene rearrangements (DOC 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, N., Jacobs, H., Bothwell, A. et al. Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol 2, 307–315 (2001). https://doi.org/10.1038/86308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing