Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adaptors as central mediators of signal transduction in immune cells

Abstract

Adaptors are molecular scaffolds that recruit effectors, which are critical for immune cell activation. Recent work has underscored the requirement for adaptors in propagating stimulatory signals as well as their ability to inhibit immune cell function. The mechanisms by which adaptors function rely not only on the intermolecular interactions they mediate, but also on where they are localized within the cell. The use of sophisticated genetic, biochemical, cellular and imaging approaches has provided important new insights into the biology of adaptor protein function. Here we focus on T lymphocytes as a model to illustrate the critical roles adaptors play as regulators of cellular activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of adaptors highlighted in this review.
Figure 2: T cell activation.
Figure 3: Negative regulation by adaptors.
Figure 4: Distinct requirements for SLP-76 and LAT in platelet signaling.

Similar content being viewed by others

References

  1. Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Finco, T.S., Kadlecek, T., Zhang, W., Samelson, L.E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–626 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, W., Irvin, B.J., Trible, R.P., Abraham, R.T. & Samelson, L.E. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int. Immunol 11, 943–950 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Yablonski, D., Kuhne, M.R., Kadlecek, T. & Weiss, A. Uncoupling of nonreceptor tyrosine kinases from PLC-γ1 in an SLP-76-deficient T cell. Science 281, 413–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R.P. & Samelson, L.E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Asada, H. et al. Grf40, A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J. Exp. Med. 189, 1383–1390 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, S.K., Fang, N., Koretzky, G.A. & McGlade, C.J. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol 9, 67–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Wardenburg, J.B. et al. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function. J. Biol. Chem. 271, 19641–19644 (1996).

    Article  CAS  Google Scholar 

  10. Fang, N. & Koretzky, G.A. SLP-76 and Vav function in separate, but overlapping pathways to augment interleukin-2 promoter activity. J. Biol. Chem. 274, 16206–16212 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, J., Motto, D.G., Koretzky, G.A. & Weiss, A. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation. Immunity 4, 593–602 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Wunderlich, L., Farago, A., Downward, J. & Buday, L. Association of Nck with tyrosine-phosphorylated SLP-76 in activated T lymphocytes. Eur. J. Immunol. 29, 1068–1075 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Bunnell, S.C. et al. Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J. Biol. Chem. 275, 2219–2230 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Su, Y.W. et al. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur. J. Immunol. 29, 3702–3711 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. da Silva, A.J. et al. Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain- containing leukocyte protein 76 and modulates interleukin 2 production. Proc. Natl. Acad. Sci. USA 94, 7493–7498 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Musci, M.A. et al. Molecular cloning of SLAP-130, an SLP-76-associated substrate of the T cell antigen receptor-stimulated protein tyrosine kinases. J. Biol. Chem. 272, 11674–11677 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Sauer, K. et al. Hematopoietic progenitor kinase 1 associates physically and functionally with the adaptor proteins B cell linker protein and SLP-76 in lymphocytes. J. Biol. Chem. 276, 45207–45216 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, W. et al. Association of Grb2, Gads, and phospholipase C-γ 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell antigen receptor-mediated signaling. J. Biol. Chem. 275, 23355–23361 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Yablonski, D., Kadlecek, T. & Weiss, A. Identification of a phospholipase C-γ1 (PLC-γ1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-γ1 and NFAT. Mol. Cell. Biol. 21, 4208–4218 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Veri, M.C. et al. Membrane raft-dependent regulation of phospholipase Cγ-1 activation in T lymphocytes. Mol. Cell. Biol. 21, 6939–6950 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buday, L., Egan, S.E., Rodriguez Viciana, P., Cantrell, D.A. & Downward, J.A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells. J. Biol. Chem. 269, 9019–9023 (1994).

    CAS  PubMed  Google Scholar 

  22. Lin, J. & Weiss, A. Identification of the minimal tyrosine residues required for linker for activation of T cell function. J. Biol. Chem. 276, 29588–29595 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Paz, P.E. et al. Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells. Biochem. J. 356, 461–471 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dower, N.A. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat. Immunol. 1, 317–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Clements, J.L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Pivniouk, V. et al. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 94, 229–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332. (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Aguado, E. et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, L., Pivniouk, V., de la Fuente, M.A., Laouini, D. & Geha, R.S. Differential role of SLP-76 domains in T cell development and function. Proc. Natl. Acad. Sci. USA 99, 884–889 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Myung, P.S. et al. Differential requirement for SLP-76 domains in T cell development and function. Immunity 15, 1011–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Sommers, C.L. et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Yoder, J. et al. Requirement for the SLP-76 adaptor GADS in T cell development. Science 291, 1987–1991 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Griffiths, E.K. et al. Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 293, 2260–2263 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Peterson, E.J. et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293, 2263–2265 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Leo, A. & Schraven, B. Adapters in lymphocyte signalling. Curr. Opin. Immunol. 13, 307–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Brdicka, T. et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–1604 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawabuchi, M. et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404, 999–1003 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Nada, S., Okada, M., MacAuley, A., Cooper, J.A. & Nakagawa, H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351, 69–72 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Jones, N. & Dumont, D.J. Recruitment of Dok-R to the EGF receptor through its PTB domain is required for attenuation of Erk MAP kinase activation. Curr. Biol. 9, 1057–1060 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Suzu, S. et al. p56(dok-2) as a cytokine-inducible inhibitor of cell proliferation and signal transduction. EMBO J. 19, 5114–5122 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Veillette, A., Latour, S. & Davidson, D. Negative regulation of immunoreceptor signaling. Annu. Rev. Immunol. 20, 669–707 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Yamanashi, Y. et al. Role of the rasGAP-associated docking protein p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes Dev. 14, 11–16 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carpino, N. et al. p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 88, 197–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Jones, N. & Dumont, D.J. The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R. Oncogene 17, 1097–1108 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Lemay, S., Davidson, D., Latour, S. & Veillette, A. Dok-3, a novel adapter molecule involved in the negative regulation of immunoreceptor signaling. Mol. Cell. Biol. 20, 2743–2754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rafnar, T. et al. Stimulation of the high-affinity IgE receptor results in the tyrosine phosphorylation of a 60 kD protein which is associated with the protein-tyrosine kinase, Csk. Mol. Immunol. 35, 249–257 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Tamir, I. et al. The RasGAP-binding protein p62dok is a mediator of inhibitory FcγRIIB signals in B cells. Immunity 12, 347–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Coffey, A.J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat. Genet. 20, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Nichols, K.E. et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc. Natl. Acad. Sci. USA 95, 13765–13770 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Czar, M.J. et al. Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc. Natl. Acad. Sci. USA 98, 7449–7454 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, C. et al. SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nat. Immunol. 2, 410–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Morra, M. et al. X-linked lymphoproliferative disease: a progressive immunodeficiency. Annu. Rev. Immunol. 19, 657–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Latour, S. et al. Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat. Immunol. 2, 681–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Tangye, S.G., Phillips, J.H., Lanier, L.L. & Nichols, K.E. Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J. Immunol. 165, 2932–2936 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Fu, C., Turck, C.W., Kurosaki, T. & Chan, A.C. BLNK: a central linker protein in B cell activation. Immunity 9, 93–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Wienands, J. et al. SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J. Exp. Med. 188, 791–795 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ishiai, M. et al. BLNK required for coupling Syk to PLCγ2 and Rac1-JNK in B cells. Immunity 10, 117–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Chiu, C.W., Dalton, M., Ishiai, M., Kurosaki, T. & Chan, A.C. BLNK: molecular scaffolding through 'cis'-mediated organization of signaling proteins. EMBO J. 21, 6461–6472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hayashi, K. et al. The B cell-restricted adaptor BASH is required for normal development and antigen receptor-mediated activation of B cells. Proc. Natl. Acad. Sci. USA 97, 2755–2760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science 286, 1949–1954 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, S. et al. B cell development and activation defects resulting in xid-like immunodeficiency in BLNK/SLP-65-deficient mice. Int. Immunol. 12, 397–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Xu, S., Wong, S.C. & Lam, K.P. Cutting edge: B cell linker protein is dispensable for the allelic exclusion of immunoglobulin heavy chain locus but required for the persistence of CD5+ B cells. J. Immunol. 165, 4153–4157 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Minegishi, Y. et al. An essential role for BLNK in human B cell development. Science 286, 1954–1957 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat. Immunol. 4, 38–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Engels, N., Wollscheid, B. & Wienands, J. Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-α. Eur. J. Immunol. 31, 2126–2134 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Kabak, S. et al. The direct recruitment of BLNK to immunoglobulin α couples the B-cell antigen receptor to distal signaling pathways. Mol. Cell. Biol. 22, 2524–2535 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cassard, S., Choquet, D., Fridman, W.H. & Bonnerot, C. Regulation of ITAM signaling by specific sequences in Ig-β B cell antigen receptor subunit. J. Biol. Chem. 271, 23786–23791 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Judd, B.A. et al. Differential requirement for LAT and SLP-76 in GPVI versus T cell receptor signaling. J. Exp. Med. 195, 705–717 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clements, J.L. et al. Fetal hemorrhage and platelet dysfunction in SLP-76-deficient mice. J. Clin. Invest. 103, 19–25 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Judd, B.A. et al. Hematopoietic reconstitution of SLP-76 corrects hemostasis and platelet signaling through α IIb β 3 and collagen receptors. Proc. Natl. Acad. Sci. USA 97, 12056–12061 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pasquet, J.M. et al. LAT is required for tyrosine phosphorylation of phospholipase cγ2 and platelet activation by the collagen receptor GPVI. Mol. Cell. Biol. 19, 8326–8334 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Burack, W.R., Cheng, A.M. & Shaw, A.S. Scaffolds, adaptors and linkers of TCR signaling: theory and practice. Curr. Opin. Immunol. 14, 312–316 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Geng, L. & Rudd, C.E. Signalling scaffolds and adaptors in T-cell immunity. Br. J. Haematol. 116, 19–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Werlen, G. & Palmer, E. The T-cell receptor signalosome: a dynamic structure with expanding complexity. Curr. Opin. Immunol. 14, 299–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Dustin, M.L. & Shaw, A.S. Costimulation: building an immunological synapse. Science 283, 649–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Freiberg, B.A. et al. Staging and resetting T cell activation in SMACs. Nat. Immunol. 3, 911–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell. Biol. 158, 1263–1275 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu, M., Janssen, E., Leung, K. & Zhang, W. Molecular cloning of a novel gene encoding a membrane-associated adaptor protein (LAX) in lymphocyte signaling. J. Biol. Chem. 277, 46151–46158 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Brdicka, T. et al. NTAL (non-T cell activation linker): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196, 1617–1626 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Janssen, E., Zhu, M., Zhang, W., Koonpaew, S. & Zhang, W. LAB: A new membrane-associated adaptor molecule in B cell activation. Nat. Immunol. 4, 117–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Abtahian, F. et al. Regulation of blood and lymphatic vascular separation by the signaling proteins SLP-76 and Syk. Science 299, 247–251 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Takaki, S. et al. Control of B cell production by the adaptor protein lnk. Definition of a conserved family of signal-modulating proteins. Immunity 13, 599–609 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Takaki, S., Morita, H., Tezuka, Y. & Takatsu, K. Enhanced hematopoiesis by hematopoietic progenitor cells lacking intracellular adaptor protein, Lnk. J. Exp. Med. 195, 151–160 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.N. Wu, K.E. Nichols and J.S. Maltzman for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Koretzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, M., Singer, A. & Koretzky, G. Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4, 110–116 (2003). https://doi.org/10.1038/ni0203-110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0203-110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing