Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blockade of eosinophil migration and airway hyperresponsiveness by cPLA2-inhibition

Abstract

We examined the role of a cytosolic phospholipase A2 (cPLA2) in antigen-induced eosinophil infiltration of airways and in airway hyperresponsiveness to methacholine. Inhibition of cPLA2, or blockade of the platelet-activating factor (PAF) receptor, blocked antigen-induced airway hyperresponsiveness and suppressed eosinophil infiltration. Neither cyclooxygenase nor 5-lipoxygenase inhibition had either effect. We show here that, in antigen-sensitized guinea pigs, cPLA2 inhibition prevents both eosinophilic infiltration and subsequent airway hyperresponsiveness after antigen challenge. We also show that this effect is mediated by first-step hydrolysis of membrane phospholipid into lysophospholipid rather than by prostanoid or leukotriene metabolites of arachidonate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of TFMK, indomethacin and AA-861, E6123 and ebastine on antigen-induced early-phase airway obstruction in guinea pigs.
Figure 2
Figure 3: Effects of TFMK, indomethacin and AA-861, E6123 and ebastine on bronchial hyperresponsiveness to methacholine 24 h after antigen inhalation in guinea pigs.
Figure 4: Time course of the OVA-induced change in BAL inflammatory cell numbers.
Figure 5: Effects of TFMK, indomethacin and AA-861, E6123 and ebastine on eosinophil and neutrophil accumulation in BAL fluid 24 h after antigen inhalation in guinea pigs.
Figure 6: Airway sections 24 h after antigen challenge.
Figure 7: Effects of TFMK and E6123 on eosinophil accumulation in BAL fluid 24 h after intranasal administration of IL-5 in guinea pigs.
Figure 8: Effects of TFMK on FMLP-CB–induced TXB2 production.

Similar content being viewed by others

References

  1. Bousquet, J. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033–1039 (1990).

    Article  CAS  Google Scholar 

  2. Laitinen, L. A., Laitinen, A. & Haahtela, T. Airway mucosal inflammation even in patients with newly diagnosed asthma. Am. Rev. Respir. Dis. 147, 697–704 (1993).

    Article  CAS  Google Scholar 

  3. Uozumi, N. et al. Role of cytosolic phospholipase A2 in allergic response and parturition. Nature 390, 618–622 (1997).

    Article  CAS  Google Scholar 

  4. Nagase, T. et al. Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A2 . Nature Immunol. 1, 42–46 (2000).

    Article  CAS  Google Scholar 

  5. Irvine, R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem. J. 204, 3–16 (1982).

    Article  CAS  Google Scholar 

  6. Hanahan, D. J. Platelet activating factor: a biologically active phosphoglyceride. Annu. Rev. Biochem. 55, 483–509 (1986).

    Article  CAS  Google Scholar 

  7. Barnes, P. J. New concepts in the pathogenesis of bronchial hyperresponsiveness and asthma. J. Allergy Clin. Immunol. 83, 1013–1026 (1989).

    Article  CAS  Google Scholar 

  8. Richards, I. M. et al. Contribution of leukotriene B4 to airway inflammation and the effect of antagonists. Ann. NY Acad. Sci. 629, 274–287 (1991).

    Article  CAS  Google Scholar 

  9. Powell, W. S., Chung, D. & Gravel, S. 5-Oxo-6,8,11,14-eicosatetraenoic acid is a potent stimulator of human eosinophil migration. J. Immunol. 154, 4123–4132 (1995).

    CAS  PubMed  Google Scholar 

  10. Cuss, F. M., Dixon, C. M. & Barnes, P. J. Effects of inhaled platelet activating factor on pulmonary function and bronchial responsiveness in man. Lancet 2, 189–192 (1986).

    Article  CAS  Google Scholar 

  11. Weiss, J. W. et al. Bronchoconstrictor effects of leukotriene C in humans. Science 216, 196–198 (1982).

    Article  CAS  Google Scholar 

  12. Fischer, A. R. et al. Effect of chronic 5-lipoxygenase inhibition on airway hyperresponsiveness in asthmatic subjects. Am. J. Respir. Crit. Care Med. 152, 1203–1207 (1995).

    Article  CAS  Google Scholar 

  13. Fuller, R. W., Dixon, C. M., Dollery, C. T. & Barnes, P. J. Prostaglandin D2 potentiates airway responsiveness to histamine and methacholine. Am. Rev. Respir. Dis. 133, 252–254 (1986).

    CAS  PubMed  Google Scholar 

  14. Jones, G. L., Saroea, H. G., Watson, R. M. & O'Byrne, P. M. Effect of an inhaled thromboxane mimetic (U46619) on airway function in human subjects. Am. Rev. Respir. Dis. 145, 1270–1274 (1992).

    Article  CAS  Google Scholar 

  15. Zhu, X. et al. Cytosolic phospholipase A2 activation is essential for β1 and β2 integrin-dependent adhesion of human eosinophils. J. Immunol. 163, 3423–3429 (1999).

    CAS  PubMed  Google Scholar 

  16. Tsunoda, H. et al. Effects of a novel PAF antagonist, E6123, on PAF-induced biological responses. Agents Actions Suppl. 31, 251–254 (1990).

    CAS  PubMed  Google Scholar 

  17. Kaneko, T., Ikeda, H., Fu, L., Nishiyama, H. & Okubo, T. Platelet-activating factor mediates the ozone-induced increase in airway microvascular leakage in guinea pigs. Eur. J. Pharmacol. 292, 251–255 (1995).

    CAS  PubMed  Google Scholar 

  18. Ashida, Y. et al. Pharmacological profile of AA-861, a 5-lipoxygenase inhibitor. Prostaglandins 26, 955–972 (1983).

    Article  CAS  Google Scholar 

  19. Arima, M., Yukawa, T. & Makino, S. Effect of YM264 on the airway hyperresponsiveness and the late asthmatic response in a guinea pig model of asthma. Chest 108, 529–534 (1995).

    Article  CAS  Google Scholar 

  20. Sun, F. F., Czuk, C. I. & Taylor, B. M. Arachidonic acid metabolism in guinea pig eosinophils: synthesis of thromboxane B2 and leukotriene B4 in response to soluble or particulate activators. J. Leukoc. Biol. 46, 152–160 (1989).

    Article  CAS  Google Scholar 

  21. Hirata, K., Maghni, K., Borgeat, P. & Sirois, P. Guinea pig alveolar eosinophils and macrophages produce leukotriene B4 but no peptido-leukotriene. J. Immunol. 144, 1880–1885 (1990).

    CAS  PubMed  Google Scholar 

  22. Sun, F. F. et al. Biochemical and functional differences between eosinophils from animal species and man. J. Leukoc. Biol. 50, 140–150 (1991).

    Article  CAS  Google Scholar 

  23. Tohda, Y. et al. The inhibitory effect of TMK688, a novel anti-allergic drug having both 5-lipoxygenase inhibitory activity and anti-histamine activity, against bronchoconstriction, leukotriene production and inflammatory cell infiltration in sensitized guinea pigs. Clin. Exp. Allergy 27, 110–118 (1997).

    Article  CAS  Google Scholar 

  24. Serhan, C. N. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins 53, 107–137 (1997).

    Article  CAS  Google Scholar 

  25. Quinn, M. T., Parthasarathy, S. & Steinberg, D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc. Natl Acad. Sci. USA 85, 2805–2809 (1988).

    Article  CAS  Google Scholar 

  26. Chilton, F. H. et al. Antigen-induced generation of lyso-phospholipids in human airways. J. Exp. Med. 183, 2235–2245 (1996).

    Article  CAS  Google Scholar 

  27. Kagoshima, M. et al. Suppressive effects of Y-24180, a receptor antagonist to platelet activating factor (PAF), on antigen-induced asthmatic responses in guinea pigs. Inflamm. Res. 46, 147–153 (1997).

    Article  CAS  Google Scholar 

  28. Heuer, H. O., Leon, I., Anderson, G. P. & Jennewein, H. M. Comparative effects of a glucocorticosteroid, theophylline and the peptido-leukotriene-antagonist CGP 45715A on antigen-induced early and late phase airway response and inflammatory cell influx in sensitised guinea pigs. Eur. J. Pharmacol. 369, 225–231 (1999).

    Article  CAS  Google Scholar 

  29. Tsunoda, H. et al. Activity of a novel thienodiazepine derivative as a platelet-activating factor antagonist in guinea pig lungs. Effects on platelet-activating factor and allergen induced eosinophil accumulation. Arzneimittelforschung 41, 224–227 (1991).

    CAS  PubMed  Google Scholar 

  30. Fitzgerald, M. F., Moncada, S. & Parente, L. The anaphylactic release of platelet-activating factor from perfused guinea-pig lungs. Br. J. Pharmacol. 88, 149–153 (1986).

    Article  CAS  Google Scholar 

  31. Uchida, Y. et al. Involvement of endothelins in immediate and late asthmatic responses of guinea pigs. J. Pharmacol. Exp. Ther. 277, 1622–1629 (1996).

    CAS  PubMed  Google Scholar 

  32. Henderson, W. R. Jr, Lu, J., Poole, K. M., Dietsch, G. N. & Chi, E. Y. Recombinant human platelet-activating factor-acetylhydrolase inhibits airway inflammation and hyperreactivity in mouse asthma model. J. Immunol. 164, 3360–3367 (2000).

    Article  CAS  Google Scholar 

  33. Kuitert, L. M. et al. Effect of a novel potent platelet-activating factor antagonist, modipafant, in clinical asthma. Am. J. Respir. Crit. Care Med. 151, 1331–1335 (1995).

    Article  CAS  Google Scholar 

  34. Evans, D. J., Barnes, P. J., Cluzel, M. & O'Connor, B. J. Effects of a potent platelet-activating factor antagonist, SR27417A, on allergen-induced asthmatic responses. Am. J. Respir. Crit. Care Med. 156, 11–16 (1997).

    Article  CAS  Google Scholar 

  35. Henig, N. R., Aitken, M. L., Liu, M. C., Yu, A. S. & Henderson, W. R. Jr Effect of recombinant human platelet-activating factor-acetylhydrolase on allergen-induced asthmatic responses. Am. J. Respir. Crit. Care Med. 162, 523–527 (2000).

    Article  CAS  Google Scholar 

  36. Andersson, P. Antigen-induced bronchial anaphylaxis in actively sensitized guinea pigs. The effect of booster injection and cyclophosphamide treatment. Int. Arch. Allergy Appl. Immunol. 64, 249–258 (1981).

    Article  CAS  Google Scholar 

  37. Street, I. P. et al. Slow- and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry 32, 5935–5940 (1993).

    Article  CAS  Google Scholar 

  38. Yoshimoto, T. et al. 2,3,5-Trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), a selective inhibitor of the 5-lipoxygenase reaction and the biosynthesis of slow-reacting substance of anaphylaxis. Biochim. Biophys. Acta 713, 470–473 (1982).

    Article  CAS  Google Scholar 

  39. Pennock, B. E., Cox, C. P., Rodgers, R. M., Cain, W. A. & Wells, J. H. A non-invasive technique for the measurement of change in specific airway resistance. J. Appl. Physiol. 46, 399–406 (1996).

    Article  Google Scholar 

  40. Fryer, A. D. et al. Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways. J. Clin. Invest. 99, 2036–2044 (1997).

    Article  CAS  Google Scholar 

  41. Evans, C. M., Fryer, A. D., Jacoby, D. B., Gleich, G. J. & Costello, R. W. Pretreatment with antibody to eosinophil major basic protein prevents hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs. J. Clin. Invest. 100, 2254–2262 (1997).

    Article  CAS  Google Scholar 

  42. Konzett, H. & Roessler, R. Versuchanordnungzu Untersuchungen an der Bronchialmusukulatur. Arch. Exp. Path. Pharmak. 195, 71–74 (1940).

    Article  Google Scholar 

  43. Jones, T. et al. Biological activity of leukotriene sulfones of respiratory tissues. Prostaglandins 24, 279–289 (1982).

    Article  CAS  Google Scholar 

  44. Minami, S. et al. A new quantitative inhalation apparatus for small animals. Jpn. J. Chest Dis. 21, 252–258 (1982).

    Google Scholar 

  45. Kurashima, K., Fujimura, M., Tsujiura, M. & Matsuda, T. Effect of surfactant inhalation on allergic bronchoconstriction in guinea pigs. Clin. Exp. Allergy 27, 337–342 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NHLBI grant RO1-HL46368 and by NHLBI SCOR grant HL-56399. S. M. and H. S. were supported by the AstraZeneca Traveling Fellowship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Leff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myou, S., Sano, H., Fujimura, M. et al. Blockade of eosinophil migration and airway hyperresponsiveness by cPLA2-inhibition. Nat Immunol 2, 145–149 (2001). https://doi.org/10.1038/84244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing