Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1

A Corrigendum to this article was published on 01 September 2006

This article has been updated

Abstract

Oct-2 and OBF-1 (also called OCA-B or Bob-1) are B cell–specific transcription factors that bind to the conserved octamer site of immunoglobulin promoters, yet their role in immunoglobulin transcription has remained unclear. We generated mice in which the lymphoid compartment was reconstituted with cells that lack both Oct-2 and OBF-1. Even in the absence of these two transcription factors, B cells develop normally to the membrane immunoglobulin M–positive (IgM+) stage and immunoglobulin gene transcription is essentially unaffected. These observations imply that the ubiquitous factor Oct-1 plays a previously unrecognized role in the control of immunoglobulin gene transcription and suggest the existence of another, as yet unidentified, cofactor. In addition, both factors are essential for germinal center formation, although OBF-1 is more important than Oct-2 for IgG production after immunization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early B cell development is normal in Oct-2−/− OBF-1−/− mice.
Figure 2: IgM+ B cells are present in the spleens of double mutant mice.
Figure 3: Serum antibody titers in nonimmunized or immunized repopulated mice.
Figure 4: Germinal center formation is impaired in mutant mice.
Figure 5: In vitro proliferative responses of B cells from repopulated animals.
Figure 6: Largely normal transcription of immunoglobulin heavy and light chain genes.
Figure 7: Model for the role of factors that interact with the octamer site in B cells.

Similar content being viewed by others

Change history

  • 10 August 2006

    In the version of this article initially published, the Oct-2-/- plot in the second row of Figure 1a is incorrect. The correct plot is provided. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Henderson, A. & Calame, K. Transcriptional regulation during B cell development. Annu. Rev. Immunol. 16, 163–200 (1998).

    Article  CAS  Google Scholar 

  2. Ernst, P. & Smale, S. T. Combinatorial regulation of transcription II: The immunoglobulin μ heavy chain gene. Immunity 2, 427–438 (1995).

    Article  CAS  Google Scholar 

  3. Arulampalam, V., Eckhardt, L. & Pettersson, S. The enhancer shift: a model to explain the developmental control of IgH gene expression in B-lineage cells. Immunol. Today 18, 549–554 (1997).

    Article  CAS  Google Scholar 

  4. Mizushima-Sugano, J. & Roeder, R. G. Cell-type-specific transcription of an immunoglobulin κ light chain promoter gene in vitro. Proc. Natl Acad. Sci. USA 83, 8511–8515 (1986).

    Article  CAS  Google Scholar 

  5. Mason, J. O., Williams, G. T. & Neuberger, M. S. Transcription cell-type specificity is controlled by an immunoglobulin VH promoter that includes a functional consensus sequence. Cell 41, 479–487 (1985).

    Article  CAS  Google Scholar 

  6. Dreyfus, M., Doyen, N. & Rougeon, F. The conserved decanucaleotide from the immunoglobulin heavy chain promoter induces a very high transcriptional activity in B cells when introduced into a heterologous promoter. EMBO J. 6, 1685–1690 (1987).

    Article  CAS  Google Scholar 

  7. Wirth, T., Staudt, L. & Baltimore, D. An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity. Nature 329, 174–177 (1987).

    Article  CAS  Google Scholar 

  8. Bergman, Y., Rice, D., Grosschedl, R. & Baltimore, D. Two regulatory elements for immunoglobulin kappa light chain gene expression. Proc. Natl Acad. Sci. USA 81, 7041–7045 (1984).

    Article  CAS  Google Scholar 

  9. Jenuwein, T. & Grosschedl, R. Complex pattern of immunoglobulin μ gene expression in normal and transgenic mice: nonoverlapping regulatory sequences govern distinct tissue specificities. Genes Dev. 5, 932–943 (1991).

    Article  CAS  Google Scholar 

  10. Matthias, P. Lymphoid-specific transcription mediated by the conserved octamer site: who is doing what? Semin. Immunol. 10, 155–163 (1998).

    Article  CAS  Google Scholar 

  11. Hermanson, G. G., Briskin, M., Sigman, D. & Wall, R. Immunoglobulin enhancer and promoter motifs 5′ of the B29 B-cell-specific gene. Proc. Natl Acad. Sci. USA 86, 7341–7345 (1989).

    Article  CAS  Google Scholar 

  12. Thevenin, C., Lucas, B. P., Kozlow, E. J. & Kehrl, J. H. Cell type- and stage-specific expression of the CD20/B1 antigen correlates with the activity of a diverged octamer DNA motif present in its promoter. J. Biol. Chem. 268, 5949–5956 (1993).

    CAS  PubMed  Google Scholar 

  13. Christensen, S. M., Martin, B. K., Tan, S. S. & Weis, J. H. Identification of sites for distinct DNA binding proteins including Oct-1 and Oct-2 in the Cr2 gene. J. Immunol. 148, 3610–3617 (1992).

    CAS  PubMed  Google Scholar 

  14. Ryan, A. K. & Rosenfeld, M. G. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev. 11, 1207–1225 (1997).

    Article  CAS  Google Scholar 

  15. Bertolino, E., Tiedt, R., Matthias, P. & Singh, H. Role of Octamer Transcription Factors and their Coactivators in the lymphoid system in Transcription Factors: Normal and Malignant Development of Blood Cells (eds. Ravid, K. & Licht, J.) (Wiley & Sons, New York, in the press, 2000).

    Google Scholar 

  16. Strubin, M., Newell, J. W. & Matthias, P. OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell 80, 497–506 (1995).

    Article  CAS  Google Scholar 

  17. Gstaiger, M., Knoepfel, L., Georgiev, O., Schaffner, W. & Hovens, C. M. A B-cell coactivator of octamer-binding transcription factors. Nature 373, 360–362 (1995).

    Article  CAS  Google Scholar 

  18. Luo, Y. & Roeder, R. G. Cloning, functional characterization, and mechanism of action of the B-cell-specific transcriptional coactivator OCA-B. Mol. Cell. Biol. 15, 4115–4124 (1995).

    Article  CAS  Google Scholar 

  19. Gstaiger, M., Georgiev, O., van Leeuwen, H., van der Vliet, P. & Schaffner, W. The B cell coactivator Bob1 shows DNA sequence-dependent complex formation with Oct-1/Oct-2 factors, leading to differential promoter activation. EMBO J. 15, 2781–2790 (1996).

    Article  CAS  Google Scholar 

  20. Müller, M. M., Ruppert, S., Schaffner, W. & Matthias, P. A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336, 544–551 (1988).

    Article  Google Scholar 

  21. Corcoran, L. et al. Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev. 7, 570–582 (1993).

    Article  CAS  Google Scholar 

  22. Humbert, P. O. & Corcoran, L. M. oct-2 gene disruption eliminates the peritoneal B-1 lymphocyte lineage and attenuates B-2 cell maturation and function. J. Immunol. 59, 5273–5284 (1997).

    Google Scholar 

  23. Corcoran, L. M. & Karvelas, M. Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation. Immunity 1, 635–645 (1994).

    Article  CAS  Google Scholar 

  24. Feldhaus, A. L., Klug, C. A., Arvin, K. L. & Singh, H. Targeted disruption of the Oct-2 locus in a B cell provides genetic evidence for two distinct cell type-specific pathways of octamer element-mediated gene activation. EMBO J. 12, 2763–2772 (1993).

    Article  CAS  Google Scholar 

  25. Schubart, D. B., Rolink, A., Kosco-Vilbois, M. H., Botteri, F. & Matthias, P. B-cell-specific coactivator OBF-1/OCA-B/Bob1 required for immune response and germinal centre formation. Nature 383, 538–542 (1996).

    Article  CAS  Google Scholar 

  26. Kim, U. et al. The B-cell-specific transcription coactivator OCA-B/OBF-1/Bob-1 is essential for normal production of immunoglobulin isotypes. Nature 383, 542–547 (1996).

    Article  CAS  Google Scholar 

  27. Nielsen, P. J., Georgiev, O., Lorenz, B. & Schaffner, W. B lymphocytes are impaired in mice lacking the transcriptional co-activator Bob1/OCA-B/OBF1. Eur. J. Immunol. 26, 3214–3218 (1996).

    Article  CAS  Google Scholar 

  28. Qin, X.-F., Reichlin, A., Luo, Y., Roeder, R. G. & Nussenzweig, M. C. OCA-B integrates B cell antigen receptor-, CD40L- and IL 4-mediated signals for the germinal center pathway of B cell development. EMBO J. 17, 5066–5075 (1998).

    Article  CAS  Google Scholar 

  29. Schubart, D. B., Rolink, A., Schubart, K. & Matthias, P. Cutting edge: lack of peripheral B cells and severe agammaglobulinemia in mice simultaneously lacking Bruton's tyrosine kinase and the B cell-specific transcriptional coactivator OBF-1. J. Immunol. 164, 18–22 (2000).

    Article  CAS  Google Scholar 

  30. Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H. & Melchers, F. IL-2 receptor alpha chain (CD25, TAC) expression defines a crucial stage in pre-B cell development. Int. Immunol. 6, 1257–1264 (1994).

    Article  CAS  Google Scholar 

  31. Rolink, A. G., Andersson, J. & Melchers, F. Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity. Eur. J. Immunol. 28, 3738–3748 (1998).

    Article  CAS  Google Scholar 

  32. Kang, S. M. et al. Induction of the POU domain transcription factor Oct-2 during T-cell activation by cognate antigen. Mol. Cell. Biol. 12, 3149–3154 (1992).

    Article  CAS  Google Scholar 

  33. Sauter, P. & Matthias, P. The B cell-specific coactivator OBF-1 (OCA-B, Bob-1) is inducible in T cells and its expression is dispensable for IL-2 gene induction. Immunobiology 197, 293–302 (1997).

    Google Scholar 

  34. Zwilling, S., Dieckmann, A., Pfisterer, P., Angel, P. & Wirth, T. Inducible expression and phosphorylation of coactivator BOB.1/OBF.1 in T cells. Science 277, 221–225 (1997).

    Article  CAS  Google Scholar 

  35. Wolf, I. et al. Downstream activation of a TATA-less promoter by Oct-2, Bob1, and NF-κB directs expression of the homing receptor BLR1 to mature B cells. J. Biol. Chem. 273, 28831–28836 (1998).

    Article  CAS  Google Scholar 

  36. Konig, H., Pfisterer, P., Corcoran, L. M. & Wirth, T. Identification of CD36 as the first gene dependent on the B-cell differentiation factor Oct-2. Genes Dev. 9, 1598–1607 (1995).

    Article  CAS  Google Scholar 

  37. LeBowitz, J. H., Kobayashi, T., Staudt, L. M., Baltimore, D. & Sharp, P. A. Octamer-binding proteins from B or HeLa cells stimulate transcription of the immunoglobulin heavy chain promoter in vitro. Genes Dev. 2, 1227–1237 (1988).

    Article  CAS  Google Scholar 

  38. Shah, P. C., Bertolino, E. & Singh, H. Using altered specificity Oct-1 and Oct-2 mutants to analyze the regulation of immunoglobulin gene transcription. EMBO J. 16, 7105–7117 (1997).

    Article  CAS  Google Scholar 

  39. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  Google Scholar 

  40. Rolink, A. G. et al. Mutations affecting either generation or survival of cells influence the pool size of mature B cells. Immunity 10, 619–628 (1999).

    Article  CAS  Google Scholar 

  41. Rolink, A. et al. A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194 (1996).

    Article  CAS  Google Scholar 

  42. Ausubel, F. et al. Current Protocols in Molecular Biology (Greene Publishing and Wiley-Interscience, New York, 1990).

    Google Scholar 

  43. Coligan, J. E. Current Protocols in Immunology (Greene Publishing and Wiley-Interscience, New York, 1992).

    Google Scholar 

  44. Rolink, A. et al. B-cell development in mouse and man. Immunologist 3, 125–128 (1995).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank lab members and S. Junker (Aarhus) for discussions, B. Bartholdy for help with the figures and Y. Nagamine for critical reading of the manuscript. The Basel Institute for Immunology was founded and is supported by F. Hoffmann-La Roche AG, Basel, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Matthias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubart, K., Massa, S., Schubart, D. et al. B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1. Nat Immunol 2, 69–74 (2001). https://doi.org/10.1038/83190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing