Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event

Abstract

Lipopolysaccharide (LPS) induction of the gene encoding interleukin 12 p40 requires remodeling of a promoter-encompassing nucleosome and the Toll-like receptor (TLR)–mediated activation of a c-Rel–containing complex. Analysis of TLR4-mutant mice revealed that remodeling requires TLR signaling. However, Rel proteins and other proteins required for transcription of an integrated p40 promoter were insufficient for remodeling. c-Rel was also unnecessary for remodeling, as remodeling was observed in c-Rel−/− macrophages, which lack p40 transcripts. These results suggest that remodeling requires TLR signaling pathways that diverge from the c-Rel activation pathways. The factors that stimulate remodeling may represent, therefore, newly identified targets of TLR signaling and of agents that regulate inflammatory responses and TH1 development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Restriction enzyme accessibility versus ChIP as a measure of nucleosome remodeling.
Figure 2: Nucleosome remodeling at the p40 promoter is a TLR-dependent event.
Figure 3: Comparison of endogenous and stably integrated IL-12 p40 promoters.
Figure 4: Comparison of restriction enzyme accessibility at the endogenous and stably integrated p40 promoters.
Figure 5: Remodeling at the p40 promoter in Rel−/− macrophages.

Similar content being viewed by others

References

  1. Gordon, S. in Fundamentals of Immunology, Fourth Edition (ed. Paul, W. E.) 533 –545 (Lippincott-Raven Publishers, Philadelphia, 1999).

    Google Scholar 

  2. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  3. Yang, R. B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signaling. Nature 395, 284– 288 (1998).

    Article  CAS  Google Scholar 

  4. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085 –2088 (1998).

    Article  CAS  Google Scholar 

  5. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  Google Scholar 

  6. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285, 736– 739 (1999).

    Article  CAS  Google Scholar 

  7. Muzio, M., Natoli, G., Saccani, S., Levrero, M. & Mantovani, A. The human toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187, 2097–2101 (1998).

    Article  CAS  Google Scholar 

  8. Yang, R. B., Mark, M. R., Gurney, A. L. & Godowski, P. J. Signaling events induced by lipopolysaccharide-activated toll-like receptor 2. J. Immunol. 163, 639– 643 (1999).

    CAS  PubMed  Google Scholar 

  9. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin . Immunity 11, 115–122 (1999).

    Article  CAS  Google Scholar 

  10. Beutler, B. Tlr4: central component of the sole mammalian LPS sensor. Curr. Opin. Immunol. 12, 20–26 (2000).

    Article  CAS  Google Scholar 

  11. Han, J., Jiang, Y., Li, Z., Kravchenko, V. V. & Ulevitch, R. J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299 (1997).

    Article  CAS  Google Scholar 

  12. Sutterwala, F. S. & Mosser, D. M. The taming of IL-12: suppressing the production of proinflammatory cytokines. J. Leukoc. Biol. 65, 543–551 (1999).

    Article  CAS  Google Scholar 

  13. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251–276 (1995).

    Article  CAS  Google Scholar 

  14. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 ( 1996).

    Article  CAS  Google Scholar 

  15. Murphy, T. L., Cleveland, M. G., Kulesza, P., Magram, J. & Murphy, K. M. Regulation of interleukin 12 p40 expression through an NF-B half-site. Mol. Cell. Biol. 15, 5258–5267 (1995).

    Article  CAS  Google Scholar 

  16. Plevy, S. E., Gemberling, J. H. M., Hsu, S., Dorner, A. J. & Smale, S. T. Multiple control elements mediate activation of the murine and human interleukin 12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol. Cell. Biol. 17, 4572–4588 ( 1997).

    Article  CAS  Google Scholar 

  17. Sanjabi, S., Hoffmann, A., Liou, H.-C., Baltimore, D. & Smale, S. T. Selective requirement for c-Rel during IL-12 p40 gene induction in macrophages. Proc. Natl Acad. Sci. USA 97, 12705–12710 (2000).

    Article  CAS  Google Scholar 

  18. Weinmann, A. S., Plevy, S. E. & Smale, S. T. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity 11, 665–675 (1999).

    Article  CAS  Google Scholar 

  19. Kowenz-Leutz, E. & Leutz, A. A C/EBPβ isoform recruits the SWI/SNF complex to activate myeloid genes. Mol. Cell 4, 735–743 ( 1999).

    Article  CAS  Google Scholar 

  20. Mink, S., Haenig, B. & Klempnauer, K. H. Interaction and functional collaboration of p300 and C/EBP. Mol. Cell. Biol. 17, 6609– 6617 (1997).

    Article  CAS  Google Scholar 

  21. Zhong, H., Voll, R. E. & Ghosh, S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1, 661– 671 (1998).

    Article  CAS  Google Scholar 

  22. De Maeyer, E. & De Maeyer-Guignard, J. in The Cytokine Handbook (ed. Thomson, A.) 491–516 (Academic Press, San Diego, 1998).

    Google Scholar 

  23. Parekh, B. S. & Maniatis, T. Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-β promoter. Mol. Cell 3, 125–129 ( 1999).

    Article  CAS  Google Scholar 

  24. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome . Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  25. McNally, J. C., Muller, W. G., Walker, D., Wolford, R. & Hager, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  Google Scholar 

  26. Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80, 321 –330 (1995).

    Article  CAS  Google Scholar 

  27. Smith, C. L. & Hager, G. L. Transcriptional regulation of mammalian genes in vivo. J. Biol. Chem. 272, 27493–27496 (1997).

    Article  CAS  Google Scholar 

  28. Merika, M., Williams, A. J., Chen, G., Collins, T. & Thanos, D. Recruitment of CBP/p300 by the IFNβ enhanceosome is required for synergistic activation of transcription. Mol. Cell 1, 277–287 ( 1998).

    Article  CAS  Google Scholar 

  29. Tumang, J. R. et al. c-Rel is essential for B lymphocyte survival and cell cycle progression. Euro. J. Immunol. 28, 4299– 4312 (1998).

    Article  CAS  Google Scholar 

  30. Morgenstern, J. P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging line. Nucl. Acids Res. 18, 3587–3596 ( 1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Plevy for providing the RAW264.7 cell lines containing the stably integrated p40 promoter-CAT reporter plasmids, V. Schuman, S. Sea and J. Park for maintaining mouse colonies and D. Baltimore, D. Thanos and R. Modlin for helpful discussions and critical reading of the manuscript. Supported by US Public Health Service grants GM07185 (to A. S. W. and M. N. B.) and AI07323 (to S. S.) and a University of California Dissertation-Year Fellowship (to A. S. W.). S. T. S. is an Investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Smale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinmann, A., Mitchell, D., Sanjabi, S. et al. Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nat Immunol 2, 51–57 (2001). https://doi.org/10.1038/83168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing