Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines

Abstract

A region of the interleukin-2 (IL-2) promoter known as the RE/AP element is activated in concert by signals that originate from the T cell antigen receptor and the CD28 coreceptor. We show here that the serine-threonine kinase Akt can provide a costimulatory signal for RE/AP activation that is indistinguishable from the signal provided by CD28. This includes the ability of Akt, like antibodies to CD28, to synergize with protein kinase C θ (PKC-θ) in the induction of RE/AP. Retrovirus-mediated expression of activated Akt in primary T cells from CD28-deficient mice is capable of selectively restoring production of IL-2 and interferon γ, but not IL-4 or IL-5. Our results provide evidence that CD28 costimulation of different cytokines is mediated by discrete signaling pathways, one of which includes Akt.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Costimulation of the IL-2 promoter and RE/AP by Akt.
Figure 2: Akt can replace the CD28 costimulatory signal for RE/AP induction by superantigen stimulation.
Figure 3: Inducible phosphorylation of Akt after CD28 ligation.
Figure 4: Akt costimulation resembles that provided by CD28.
Figure 5: Inhibition of IL-2 production in primary T cells by LY294002.
Figure 6: Expression of retrovirally encoded active Akt in primary T cells and effect on proliferation.
Figure 7: Akt substitutes for CD28 in IL-2 and IFN-γ production by primary T cells.
Figure 8

Similar content being viewed by others

References

  1. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Noel, P. J., Boise, L. H. & Thompson, C. B. Regulation of T cell activation by CD28 and CTLA4. Adv. Exp. Med. Biol. 406, 209–217 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Howland, K. C., Ausubel, L. J., London, C. A. & Abbas, A. K. The roles of CD28 and CD40 ligand in T cell activation and tolerance. J. Immunol. 164, 4465–4470 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. King, C. L., Xianli, J., June, C. H., Abe, R. & Lee, K. P. CD28-deficient mice generate an impaired Th2 response to Schistosoma mansoni infection. Eur. J. Immunol. 26, 2448–2455 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Villegas, E. N., Elloso, M. M., Reichmann, G., Peach, R. & Hunter, C. A. Role of CD28 in the generation of effector and memory responses required for resistance to Toxoplasma gondii. J. Immunol. 163, 3344–3353 (1999).

    CAS  PubMed  Google Scholar 

  6. Dahl, A. M. et al. Expression of Bcl-XL restores cell survival, but not proliferation and effector differentiation, in CD28-deficient T lymphocytes. J. Exp. Med. 191, 2031–2038 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lucas, P. J., Negishi, I., Nakayama, K., Fields, L. E. & Loh, D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768 (1995).

    CAS  PubMed  Google Scholar 

  8. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Wülfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  PubMed  Google Scholar 

  10. Ward, S. G. CD28: a signaling perspective. Biochem J. 318, 361–377 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Shapiro, V. S., Truitt, K. E., Imboden, J. B. & Weiss, A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol. Cell Biol. 17, 4051–4058 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hutchcroft, J. E. & Bierer, B. E. Signaling through CD28/CTLA-4 family receptors. J. Immunol. 156, 4071–4074 (1996).

    CAS  PubMed  Google Scholar 

  14. June, C. H., Bluestone, J. A., Nadler, L. M. & Thompson, C. B. The B7 and CD28 receptor families. Immunol. Today 15, 321–331 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Crabtree, G. R. & Clipstone, N. A. Signal transduction between the plasma membrane and nuclues of T lymphocytes. Annu. Rev. Biochem. 63, 1045–1083 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Jain, J., Loh, C. & Rao, A. Transcriptional regulation of the IL-2 gene. Curr. Opin. Immunol. 7, 333–342 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Civil, A., Geerts, M., Aarden, L. A. & Verweij, C. L. Evidence for a role of CD28RE as a response element for distinct mitogenic T cell activation signals. Eur. J. Immunol. 22, 3041–3043 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Fraser, J. D., Irving, B. A., Crabtree, G. R. & Weiss, A. Regulation of Interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 251, 313–316 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. McGuire, K. L. & Iacobelli, M. Involvement of Rel, Fos, and Jun proteins in binding activity to the IL-2 promoter CD28 element/AP-1 sequence in human T cells. J. Immunol. 159, 1319–1327 (1997).

    CAS  PubMed  Google Scholar 

  20. Verweij, C. L., Geerts, M. & Aarden, L. A. Activation of interleukin-2 gene transcription via the T-cell surface molecule CD28 is mediated through an NF-κB-like response element. J. Biol. Chem. 266, 14179–14182 (1991).

    CAS  PubMed  Google Scholar 

  21. Butscher, W. G., Powers, C., Olive, M., Vinson, C. & Gardner, K. Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2. J. Biol. Chem. 273, 552–560 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Curtiss, V. E., Smilde, R. & McGuire, K. L. Requirements for interleukin 2 promoter transactivation by the Tax protein of human T-cell leukemia virus type 1. Mol. Cell Biol. 16, 3567–3575 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fraser, J. D. & Weiss, A. Regulation of T-cell lymphokine gene transcription by the accessory molecule CD28. Mol. Cell Biol. 12, 4357–4363 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cerdan, C. et al. Prolonged IL-2 receptor α/CD25 expression after T cell activation via the adhesion molecules CD2 and CD28. J. Immunol. 149, 2255–2261 (1992).

    CAS  PubMed  Google Scholar 

  25. Thompson, C. B. et al. CD28 activation pathway regulates the production of multiple T-cell- derived lymphokines/cytokines. Proc. Natl Acad. Sci. USA 86, 1333–1337 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wechsler, A. S., Gordon, M. C., Dendorfer, U. & LeClair, K. P. Induction of IL-8 expression in T cells uses the CD28 costimulatory pathway. J. Immunol. 153, 2515–2523 (1994).

    CAS  PubMed  Google Scholar 

  27. Ghosh, P., Tan, T.-H., Rice, N. R., Sica, A. & Young, H. A. The interleukin 2 CD28-responsive complex contains at least three members of the NF-κB family: c-Rel, p50, and p65. Proc. Natl Acad. Sci. USA 90, 1696–1700 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maggirwar, S. B., Harhaj, E. W. & Sun, S.-C. Regulation of the interleukin-2 CD28-responsive element by NF-ATp and various NF-κB/Rel transcription factors. Mol. Cell Biol. 17, 2605–2614 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bryan, R. G. et al. Effect of CD28 signal transduction on c-Rel in human peripheral blood T cells. Mol. Cell Biol. 14, 7933–7942 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lai, J.-H. & Tan, T.-H. CD28 signaling causes a sustained down-regulation of IκBα which can be prevented by the immunosuppressant rapamycin. J. Biol. Chem. 269, 30077–30080 (1994).

    CAS  PubMed  Google Scholar 

  31. Kontgen, F. et al. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 9, 1965–1977 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Parry, R. V. et al. Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur J. Immunol. 27, 2495–2501 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Ueda, Y. et al. Both CD28 ligands CD80 (B7-1) and CD86 (B7-2) activate phosphatidylinositol 3-kinase, and wortmannin reveals heterogeneity in the regulation of T cell IL-2 secretion. Int. Immunol. 7, 957–966 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Kane, L. P., Shapiro, V. S. S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol. 9, 601–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Jones, R. G. et al. Protein Kinase B Regulates T Lymphocyte Survival, Nuclear Factor κB Activation, and Bcl-X(L) Levels In vivo. J. Exp. Med. 191, 1721–1734 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eder, A. M., Dominguez, L., Franke, T. F. & Ashwell, J. D. Phosphoinositide 3-kinase regulation of T cell receptor-mediated interleukin-2 gene expression in normal T cells. J. Biol. Chem. 273, 28025–28031 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Vanhaesebroeck, B. & Alessi, D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Manger, B., Weiss, A., Imboden, J., Laing, T. & Stobo, J. D. The role of protein kinase C in transmembrane signaling by the T cell antigen receptor complex. Effects of stimulation with soluble or immobilized CD3 antibodies. J. Immunol. 139, 2755–2760 (1987).

    CAS  PubMed  Google Scholar 

  40. Weiss, A., Manger, B. & Imboden, J. Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J. Immunol. 137, 819–825 (1986).

    CAS  PubMed  Google Scholar 

  41. Shapiro, V. S., Mollenauer, M. N. & Weiss, A. Nuclear factor of activated T cells and AP-1 are insufficient for IL-2 promoter activation: requirement for CD28 up-regulation of RE/AP. J. Immunol. 161, 6455–6458 (1998).

    CAS  PubMed  Google Scholar 

  42. Fraser, J. D., Newton, M. E. & Weiss, A. CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation. J. Exp. Med. 175, 1131–1134 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Alessi, D. R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, X., O'Mahony, A., Mu, Y., Geleziunas, R. & Greene, W. C. Protein kinase C-θ participates in NF-κB activation induced by CD3-CD28 costimulation through selective activation of IκB kinase β. Mol. Cell Biol. 20, 2933–2940 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coudronniere, N., Villalba, M., Englund, N. & Altman, A. NF-κ B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-θ. Proc. Natl Acad. Sci. USA 97, 3394–3399 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Monks, C. R., Kupfer, H., Tamir, I., Barlow, A. & Kupfer, A. Selective modulation of protein kinase C-θ during T-cell activation. Nature 385, 83–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Wilkinson, S. E., Parker, P. J. & Nixon, J. S. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem. J. 294, 335–337 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11, 281–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Stokoe, D. et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Khattri, R., Auger, J. A., Griffin, M. D., Sharpe, A. H. & Bluestone, J. A. Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol. 162, 5784–5791 (1999).

    CAS  PubMed  Google Scholar 

  51. Kubo, M. et al. CD28 costimulation accelerates IL-4 receptor sensitivity and IL-4- mediated Th2 differentiation. J. Immunol. 163, 2432–2442 (1999).

    CAS  PubMed  Google Scholar 

  52. Rulifson, I. C., Sperling, A. I., Fields, P. E., Fitch, F. W. & Bluestone, J. A. CD28 costimulation promotes the production of Th2 cytokines. J. Immunol. 158, 658–665 (1997).

    CAS  PubMed  Google Scholar 

  53. Ronchese, F., Hausmann, B., Hubele, S. & Lane, P. Mice transgenic for a soluble form of murine CTLA-4 show enhanced expansion of antigen-specific CD4+ T cells and defective antibody production in vivo. J. Exp. Med. 179, 809–817 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Lenschow, D. J. et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5, 285–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Peterson, R. T. & Schreiber, S. L. Kinase phosphorylation: Keeping it all in the family. Curr. Biol. 9, R521–524 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Li-Weber, M., Giasi, M. & Krammer, P. H. Involvement of Jun and Rel proteins in up-regulation of interleukin-4 gene activity by the T cell accessory molecule CD28. J. Biol. Chem. 273, 32460–32466 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Stack, R. M., Thompson, C. B. & Fitch, F. W. IL-4 enhances long-term survival of CD28-deficient T cells. J. Immunol. 160, 2255–2262 (1998).

    CAS  PubMed  Google Scholar 

  58. Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. Akt/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68, 965–1014 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Parekh, D. B., Ziegler, W. & Parker, P. J. Multiple pathways control protein kinase C phosphorylation. EMBO J. 19, 496–503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ott, M. et al. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 275, 1481–1485 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Borgatti, P. et al. Extracellular HIV-1 Tat protein activates phosphatidylinositol 3- and Akt/PKB kinases in CD4+ T lymphoblastoid Jurkat cells. Eur J. Immunol. 27, 2805–2811 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Reif, K., Lucas, S. & Cantrell, D. A negative role for phosphoinositide 3-kinase in T-cell antigen receptor function. Curr. Biol. 7, 285–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Crooks, M. E. et al. CD28-mediated costimulation in the absence of phosphatidylinositol 3-kinase association and activation. Mol. Cell Biol. 15, 6820–6828 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ward, S. G., Wilson, A., Turner, L., Westwick, J. & Sansom, D. M. Inhibition of CD28-mediated T cell costimulation by the phosphoinositide 3-kinase inhibitor wortmannin. Eur. J. Immunol. 25, 526–532 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Ward, S. G., June, C. H. & Olive, D. PI 3-kinase: a pivotal pathway in T-cell activation? Immunol. Today 17, 187–197 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Shan, X. et al. Deficiency of PTEN in jurkat T cells causes constitutive localization of itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol. Cell Biol. 20, 6945–6957 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hehner, S. P. et al. Mixed-lineage kinase 3 delivers CD3/CD28-derived signals into the IκB kinase complex. Mol. Cell Biol. 20, 2556–2568 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, X., Cunningham, E. T., Mu, Y., Geleziunas, R. & Greene, W. C. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 10, 271–280 (1999).

    Article  PubMed  Google Scholar 

  69. Tsatsanis, C., Patriotis, C. & Tsichlis, P. N. Tpl-2 induces IL-2 expression in T-cell lines by triggering multiple signaling pathways that activate NFAT and NF-κB. Oncogene 17, 2609–2618 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Tuosto, L. et al. Mitogen-activated kinase kinase kinase 1 regulates T cell receptor-and CD28-mediated signaling events which lead to NF-κB activation. Eur. J. Immunol. 30, 2445–2454 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Tsatsanis, C., Patriotis, C., Bear, S. E. & Tsichlis, P. N. The Tpl-2 protooncoprotein activates the nuclear factor of activated T cells and induces interleukin 2 expression in T cell lines. Proc. Natl Acad. Sci. USA 95, 3827–3832 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ballester, A., Tobena, R., Lisbona, C., Calvo, V. & Alemany, S. Cot kinase regulation of IL-2 production in Jurkat T cells. J. Immunol. 159, 1613–1618 (1997).

    CAS  PubMed  Google Scholar 

  73. Durand, D. B., Bush, M. R., Morgan, J. G., Weiss, A. & Crabtree, G. R. A 275 basepair fragment at the 5′ end of the interleukin 2 gene enhances expression from a heterologous promoter in response to signals from the T cell antigen receptor. J. Exp. Med. 165, 395–407 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Locksley and C. McArthur for use of the MoFlo sorter and expert flow cytometry, respectively. Supported by the Cancer Research Institute (L. P. K.), the Glaxo Wellcome Institute for Digestive Health (P. G. A.) and National Institutes of Health grants AI25022 and AI35297 (A. K. A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kane, L., Andres, P., Howland, K. et al. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nat Immunol 2, 37–44 (2001). https://doi.org/10.1038/83144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing