Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Orchestrating the orchestrators: chemokines in control of T cell traffic

Abstract

The understanding of how chemokines orchestrate the trafficking and activity of immune cells has increased considerably. So far, over 50 chemokines and 20 chemokine receptors have been identified. Detailed analyses have demonstrated the function of chemokine receptors on T cell subsets, the temporal and spatial expression patterns of chemokines in vivo and the phenotypes of animals genetically deficient in one component or several components of the chemokine-chemokine receptor system. New microscopy modalities for studying the influence of chemokines on the migratory activity of T cells in the lymph node have also brought new insights. Here we review such advances with particular emphasis on control of the migration of T cell subsets in lymph nodes and in peripheral tissues in homeostasis and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemokine control of T cell migration in the lymph node in the steady state and during the immune response.
Figure 2: Chemokine receptors and effector T cells and Treg cells.

Similar content being viewed by others

References

  1. Viola, A. & Luster, A.D. Chemokines and their receptors: drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 48, 171–197 (2008).

    CAS  PubMed  Google Scholar 

  2. Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    CAS  PubMed  Google Scholar 

  3. Allen, S.J., Crown, S.E. & Handel, T.M. Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol. 25, 787–820 (2007).

    CAS  PubMed  Google Scholar 

  4. Pittet, M.J. & Mempel, T.R. Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol. Rev. 221, 107–129 (2008).

    CAS  PubMed  Google Scholar 

  5. Boehm, T. & Bleul, C.C. The evolutionary history of lymphoid organs. Nat. Immunol. 8, 131–135 (2007).

    CAS  PubMed  Google Scholar 

  6. Forster, R. et al. A putative chemokine receptor, BLRI, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    CAS  PubMed  Google Scholar 

  7. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    CAS  PubMed  Google Scholar 

  8. Gunn, M.D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ansel, K.M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    CAS  PubMed  Google Scholar 

  10. Schwab, S.R. & Cyster, J.G. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301 (2007).

    CAS  PubMed  Google Scholar 

  11. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Luther, S.A., Tang, H.L., Hyman, P.L., Farr, A.G. & Cyster, J.G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl. Acad. Sci. USA 97, 12694–12699 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    CAS  PubMed  Google Scholar 

  14. Carlsen, H.S., Haraldsen, G., Brandtzaeg, P. & Baekkevold, E.S. Disparate lymphoid chemokine expression in mice and men: no evidence of CCL21 synthesis by human high endothelial venules. Blood 106, 444–446 (2005).

    CAS  PubMed  Google Scholar 

  15. Baekkevold, E.S. et al. The CCR7 ligand ELC (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J. Exp. Med. 193, 1105–1112 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gretz, J.E., Norbury, C.C., Anderson, A.O., Proudfoot, A.E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    CAS  PubMed  Google Scholar 

  18. Lammermann, T. & Sixt, M. The microanatomy of T-cell responses. Immunol. Rev. 221, 26–43 (2008).

    PubMed  Google Scholar 

  19. Vassileva, G. et al. The reduced expression of 6Ckine in the plt mouse results from the deletion of one of two 6Ckine genes. J. Exp. Med. 190, 1183–1188 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ngo, V.N. et al. Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mueller, S.N. et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317, 670–674 (2007).

    CAS  PubMed  Google Scholar 

  22. Luther, S.A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid Neogenesis. J. Immunol. 169, 424–433 (2002).

    CAS  PubMed  Google Scholar 

  23. Stein, J.V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Katakai, T. et al. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int. Immunol. 16, 1133–1142 (2004).

    CAS  PubMed  Google Scholar 

  25. Hargreaves, D.C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45–56 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Asperti-Boursin, F., Real, E., Bismuth, G., Trautmann, A. & Donnadieu, E. CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase-independent manner. J. Exp. Med. 204, 1167–1179 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ley, K., Laudanna, C., Cybulsky, M.I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    CAS  PubMed  Google Scholar 

  28. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196, 65–75 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Scimone, M.L. et al. CXCL12 mediates CCR7-independent homing of central memory cells, but not naive T cells, in peripheral lymph nodes. J. Exp. Med. 199, 1113–1120 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Alon, R. & Dustin, M.L. Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells. Immunity 26, 17–27 (2007).

    CAS  PubMed  Google Scholar 

  31. Stachowiak, A.N., Wang, Y., Huang, Y.C. & Irvine, D.J. Homeostatic lymphoid chemokines synergize with adhesion ligands to trigger T and B lymphocyte chemokinesis. J. Immunol. 177, 2340–2348 (2006).

    CAS  PubMed  Google Scholar 

  32. Okada, T. & Cyster, J.G. CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J. Immunol. 178, 2973–2978 (2007).

    CAS  PubMed  Google Scholar 

  33. Worbs, T., Mempel, T.R., Bolter, J., von Andrian, U.H. & Forster, R. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J. Exp. Med. 204, 489–495 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Phillipson, M. et al. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 203, 2569–2575 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    CAS  PubMed  Google Scholar 

  36. Imai, T. et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521–530 (1997).

    CAS  PubMed  Google Scholar 

  37. Carman, C.V. & Springer, T.A. Trans-cellular migration: cell-cell contacts get intimate. Curr. Opin. Cell. Biol. published online 1 July 2008 (doi:10.1016/j.ceb.2008.05.007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, S. et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203, 1519–1532 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gretz, J.E., Anderson, A.O. & Shaw, S. Cords, channels, corridors and conduits: Critical artichitectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev. 156, 11–24 (1997).

    CAS  PubMed  Google Scholar 

  40. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cahalan, M.D., Parker, I., Wei, S.H. & Miller, M.J. Real-time imaging of lymphocytes in vivo. Curr. Opin. Immunol. 15, 372–377 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mempel, T.R., Junt, T. & von Andrian, U.H. Rulers over randomness: stroma cells guide lymphocyte migration in lymph nodes. Immunity 25, 867–869 (2006).

    CAS  PubMed  Google Scholar 

  43. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  Google Scholar 

  44. Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol. 8, 1076–1085 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Rot, A. Neutrophil attractant/activation protein-1 (interleukin-8) induces in vitro neutrophil migration by haptotactic mechanism. Eur. J. Immunol. 23, 303–306 (1993).

    CAS  PubMed  Google Scholar 

  46. Huang, J.H. et al. Requirements for T lymphocyte migration in explanted lymph nodes. J. Immunol. 178, 7747–7755 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Kabashima, K. et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat. Immunol. 4, 694–701 (2003).

    CAS  PubMed  Google Scholar 

  48. Pham, T.H., Okada, T., Matloubian, M., Lo, C.G. & Cyster, J.G. S1P1 receptor signaling overrides retention mediated by Gαi–coupled receptors to promote T cell egress. Immunity 28, 122–133 (2008).

    CAS  PubMed  Google Scholar 

  49. Mackay, C.R., Marston, W. & Dudler, L. Altered patterns of T cell migration through lymph nodes and skin following antigen challenge. Eur. J. Immunol. 22, 2205–2210 (1992).

    CAS  PubMed  Google Scholar 

  50. Chen, Q. et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat. Immunol. 7, 1299–1308 (2006).

    CAS  PubMed  Google Scholar 

  51. Tedla, N. et al. Regulation of T lymphocyte trafficking into lymph nodes during an immune response by the chemokines macrophage inflammatory protein (MIP)-1α and MIP-1β. J. Immunol. 161, 5663–5672 (1998).

    CAS  PubMed  Google Scholar 

  52. Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440, 890–895 (2006).

    CAS  PubMed  Google Scholar 

  53. Yoneyama, H. et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int. Immunol. 16, 915–928 (2004).

    CAS  PubMed  Google Scholar 

  54. Guarda, G. et al. L-selectin-negative CCR7 effector and memory CD8+ T cells enter reactive lymph nodes and kill dendritic cells. Nat. Immunol. 8, 743–752 (2007).

    CAS  PubMed  Google Scholar 

  55. Palframan, R.T. et al. Inflammatory chemokine transport and presentation in HEV: A remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1374 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. King, C., Tangye, S.G. & Mackay, C.R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).

    CAS  PubMed  Google Scholar 

  57. Agace, W.W. Tissue-tropic effector T cells: generation and targeting opportunities. Nat. Rev. Immunol. 6, 682–692 (2006).

    CAS  PubMed  Google Scholar 

  58. Sigmundsdottir, H. & Butcher, E. Environmental cues, dendritic cells and the programming of tissue selective lymphocyte trafficking. Nat. Immunol. 9, 981–987 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reiss, Y., Proudfoot, A.E., Power, C.A., Campbell, J.J. & Butcher, E.C. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J. Exp. Med. 194, 1541–1547 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ley, K. & Kansas, G.S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 4, 325–335 (2004).

    CAS  PubMed  Google Scholar 

  61. Meyer, E.H. et al. iNKT cells require CCR4 to localize to the airways and to induce airway hyperreactivity. J. Immunol. 179, 4661–4671 (2007).

    CAS  PubMed  Google Scholar 

  62. Kuklin, N.A. et al. α4β7 independent pathway for CD8+ T cell-mediated intestinal immunity to rotavirus. J. Clin. Invest. 106, 1541–1552 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Campbell, J.J., O'Connell, D.J. & Wurbel, M.A. Cutting Edge: Chemokine receptor CCR4 is necessary for antigen-driven cutaneous accumulation of CD4 T cells under physiological conditions. J. Immunol. 178, 3358–3362 (2007).

    CAS  PubMed  Google Scholar 

  64. Wurbel, M.A., Malissen, M., Guy-Grand, D., Malissen, B. & Campbell, J.J. Impaired accumulation of antigen-specific CD8 lymphocytes in chemokine CCL25-deficient intestinal epithelium and lamina propria. J. Immunol. 178, 7598–7606 (2007).

    CAS  PubMed  Google Scholar 

  65. Bendelac, A., Rivera, M.N., Park, S.H. & Roark, J.H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    CAS  PubMed  Google Scholar 

  66. Thomas, S.Y. et al. CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol. 171, 2571–2580 (2003).

    CAS  PubMed  Google Scholar 

  67. Germanov, E. et al. Critical role for the chemokine receptor CXCR6 in homeostasis and activation of CD1d-restricted NKT cells. J. Immunol. 181, 81–91 (2008).

    CAS  PubMed  Google Scholar 

  68. Johnston, B., Kim, C.H., Soler, D., Emoto, M. & Butcher, E.C. Differential chemokine responses and homing patterns of murine TCRαβ NKT cell subsets. J. Immunol. 171, 2960–2969 (2003).

    CAS  PubMed  Google Scholar 

  69. Glatzel, A. et al. Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of Vδ2/Vγ9 γδ T cells. J. Immunol. 168, 4920–4929 (2002).

    CAS  PubMed  Google Scholar 

  70. Ebert, L.M., Meuter, S. & Moser, B. Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J. Immunol. 176, 4331–4336 (2006).

    CAS  PubMed  Google Scholar 

  71. Thomsen, A.R., Nansen, A., Madsen, A.N., Bartholdy, C. & Christensen, J.P. Regulation of T cell migration during viral infection: role of adhesion molecules and chemokines. Immunol. Lett. 85, 119–127 (2003).

    CAS  PubMed  Google Scholar 

  72. Hess, C. et al. IL-8 responsiveness defines a subset of CD8 T cells poised to kill. Blood 104, 3463–3471 (2004).

    CAS  PubMed  Google Scholar 

  73. Grogan, J.L. & Locksley, R.M. T helper cell differentiation: on again, off again. Curr. Opin. Immunol. 14, 366–372 (2002).

    CAS  PubMed  Google Scholar 

  74. Syrbe, U., Siveke, J. & Hamann, A. Th1/Th2 subsets: distinct differences in homing and chemokine receptor expression? Springer Semin. Immunopathol. 21, 263–285 (1999).

    CAS  PubMed  Google Scholar 

  75. Andrew, D.P. et al. C–C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. J. Immunol. 166, 103–111 (2001).

    CAS  PubMed  Google Scholar 

  76. Tager, A.M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol. 4, 982–990 (2003).

    CAS  PubMed  Google Scholar 

  77. Lord, G.M. et al. T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 106, 3432–3439 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mikhak, Z. et al. STAT1 in peripheral tissue differentially regulates homing of antigen-specific Th1 and Th2 cells. J. Immunol. 176, 4959–4967 (2006).

    CAS  PubMed  Google Scholar 

  79. Sundrud, M.S. et al. Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J. Immunol. 171, 3542–3549 (2003).

    CAS  PubMed  Google Scholar 

  80. Mathew, A. et al. Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J. Exp. Med. 193, 1087–1096 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mackay, C. Moving targets: cell migration inhibitors as new anti-inflammatory therapies Nat. Immunol. 9, 988–998 (2008).

    CAS  PubMed  Google Scholar 

  82. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8, 337–348 (2008).

    CAS  PubMed  Google Scholar 

  83. Hirota, K. et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204, 2803–2812 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Singh, S.P., Zhang, H.H., Foley, J.F., Hedrick, M.N. & Farber, J.M. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J. Immunol. 180, 214–221 (2008).

    CAS  PubMed  Google Scholar 

  85. Acosta-Rodriguez, E.V. et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    CAS  PubMed  Google Scholar 

  86. Sato, W., Aranami, T. & Yamamura, T. Cutting edge: Human Th17 cells are identified as bearing CCR2+CCR5 phenotype. J. Immunol. 178, 7525–7529 (2007).

    CAS  PubMed  Google Scholar 

  87. Nistala, K. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 58, 875–887 (2008).

    PubMed  PubMed Central  Google Scholar 

  88. Ouyang, W., Kolls, J.K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hsu, H.C. et al. Interleukin 17–producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9, 166–175 (2008).

    CAS  PubMed  Google Scholar 

  90. Lim, H.W., Lee, J., Hillsamer, P. & Kim, C.H. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J. Immunol. 180, 122–129 (2008).

    CAS  PubMed  Google Scholar 

  91. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    CAS  PubMed  Google Scholar 

  92. Mempel, T.R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).

    CAS  PubMed  Google Scholar 

  93. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).

    CAS  PubMed  Google Scholar 

  94. Huehn, J. & Hamann, A. Homing to suppress: address codes for Treg migration. Trends Immunol. 26, 632–636 (2005).

    CAS  PubMed  Google Scholar 

  95. Wei, S., Kryczek, I. & Zou, W. Regulatory T-cell compartmentalization and trafficking. Blood 108, 426–431 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lim, H.W., Hillsamer, P. & Kim, C.H. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J. Clin. Invest. 114, 1640–1649 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, J.H., Kang, S.G. & Kim, C.H. FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues. J. Immunol. 178, 301–311 (2007).

    CAS  PubMed  Google Scholar 

  98. Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med. 199, 303–313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Siegmund, K. et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood 106, 3097–3104 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Taylor, P.A. et al. L-Selectinhi but not the L-selectinlo CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 104, 3804–3812 (2004).

    CAS  PubMed  Google Scholar 

  101. Szanya, V., Ermann, J., Taylor, C., Holness, C. & Fathman, C.G. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J. Immunol. 169, 2461–2465 (2002).

    CAS  PubMed  Google Scholar 

  102. Ueha, S. et al. CCR7 mediates the migration of Foxp3+ regulatory T cells to the paracortical areas of peripheral lymph nodes through high endothelial venules. J. Leukoc. Biol. 82, 1230–1238 (2007).

    CAS  PubMed  Google Scholar 

  103. Schneider, M.A., Meingassner, J.G., Lipp, M., Moore, H.D. & Rot, A. CCR7 is required for the in vivo function of CD4+CD25+ regulatory T cells. J. Exp. Med. 204, 735–745 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Menning, A. et al. Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets. Eur. J. Immunol. 37, 1575–1583 (2007).

    CAS  PubMed  Google Scholar 

  105. Yuan, Q. et al. CCR4-dependent regulatory T cell function in inflammatory bowel disease. J. Exp. Med. 204, 1327–1334 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Denning, T.L., Kim, G. & Kronenberg, M. Cutting edge: CD4+CD25+ regulatory T cells impaired for intestinal homing can prevent colitis. J. Immunol. 174, 7487–7491 (2005).

    CAS  PubMed  Google Scholar 

  107. Lee, I. et al. Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J. Exp. Med. 201, 1037–1044 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yurchenko, E. et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J. Exp. Med. 203, 2451–2460 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Muller, M. et al. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J. Immunol. 179, 2774–2786 (2007).

    PubMed  Google Scholar 

  110. Thelen, M. & Stein, J. How chemokines invite leukocytes to dance. Nat. Immunol. 9, 953–959 (2008).

    CAS  PubMed  Google Scholar 

  111. Bromley, S.K., Thomas, S.Y. & Luster, A.D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6, 895–901 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D Luster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromley, S., Mempel, T. & Luster, A. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 9, 970–980 (2008). https://doi.org/10.1038/ni.f.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.f.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing