Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome

Abstract

A properly mounted immune response is indispensable for recognizing and eliminating danger arising from foreign invaders and tissue trauma. However, the 'inflammatory fire' kindled by the host response must be tightly controlled to prevent it from spreading and causing irreparable damage. Accordingly, acute inflammation is self-limiting and is normally attenuated after elimination of noxious stimuli, restoration of homeostasis and initiation of tissue repair. However, unresolved inflammation may lead to the development of chronic autoimmune and degenerative diseases and cancer. Here, we discuss the key molecular mechanisms that contribute to the self-limiting nature of inflammatory signaling, with emphasis on the negative regulation of the NF-κB pathway and the NLRP3 inflammasome. Understanding these negative regulatory mechanisms should facilitate the development of much-needed therapeutic strategies for treatment of inflammatory and autoimmune pathologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms involved in the negative feedback regulation of proinflammatory NF-κB signaling.
Figure 2: Regulation of TNFR1-induced NF-κB signaling by ubiquitination and phosphorylation.
Figure 3: The NLRP3 inflammasome and its regulation.

Similar content being viewed by others

References

  1. Sugimoto, M.A., Sousa, L.P., Pinho, V., Perretti, M. & Teixeira, M.M. Resolution of inflammation: what controls its onset? Front. Immunol. 7, 160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  PubMed  Google Scholar 

  3. Dinarello, C.A., Simon, A. & van der Meer, J.W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633–652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Headland, S.E. & Norling, L.V. The resolution of inflammation: principles and challenges. Semin. Immunol. 27, 149–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Tang, D., Kang, R., Coyne, C.B., Zeh, H.J. & Lotze, M.T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arthur, J.S. & Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679–692 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. O'Shea, J.J. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Q., Lenardo, M.J. & Baltimore, D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168, 37–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715–723 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Peng, B. et al. Defective feedback regulation of NF-κB underlies Sjogren's syndrome in mice with mutated κB enhancers of the IκBα promoter. Proc. Natl. Acad. Sci. USA 107, 15193–15198 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alves, B.N. et al. IκBɛ is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J. Immunol. 192, 3121–3132 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, H. et al. IRAK-M mediates Toll-like receptor/IL-1R-induced NFκB activation and cytokine production. EMBO J. 32, 583–596 (2013). This paper describes how IRAK-M mediates a MEKK3-dependent second wave of NF-κB activation, which results in the expression of negative regulators of this pathway, such as IκBα or A20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyata, M. et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat. Commun. 6, 6062 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hardy, M.P. & O'Neill, L.A. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J. Biol. Chem. 279, 27699–27708 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Koop, A. et al. Novel splice variants of human IKKɛ negatively regulate IKKɛ-induced IRF3 and NF-kB activation. Eur. J. Immunol. 41, 224–234 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Taganov, K.D., Boldin, M.P., Chang, K.J. & Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 103, 12481–12486 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boldin, M.P. et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 208, 1189–1201 (2011). This paper demonstrates that the targeted deletion of miR-146a in mice increases susceptibility to endotoxic shock and results in the development of an autoimmune disorder that is at least partially due to the derepression of the miR-146a-target genes TRAF6 and IRAK1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, J.L. et al. NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl. Acad. Sci. USA 108, 9184–9189 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou, X. et al. MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat. Commun. 5, 3619 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. O'Connell, R.M., Rao, D.S. & Baltimore, D. microRNA regulation of inflammatory responses. Annu. Rev. Immunol. 30, 295–312 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Mehta, A. & Baltimore, D. MicroRNAs as regulatory elements in immune system logic. Nat. Rev. Immunol. 16, 279–294 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281, 1001–1005 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Molle, C. et al. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease. J. Exp. Med. 210, 1675–1684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taylor, G.A. et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Mino, T. et al. Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Pratama, A. et al. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 38, 669–680 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Miao, R. et al. Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol. Cell Biol. 91, 368–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garg, A.V. et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43, 475–487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jeltsch, K.M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nat. Immunol. 15, 1079–1089 (2014). In this study, the authors demonstrate that Roquin and Regnase-1 repress differentiation of IL-17-producing helper T cells via targeting a specific set of mRNAs. This repression is released after T cell–receptor stimulation by MALT1-mediated cleavage of Roquin and Regnase-1.

    Article  CAS  PubMed  Google Scholar 

  33. Uehata, T. et al. Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell 153, 1036–1049 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Afonina, I.S., Elton, L., Carpentier, I. & Beyaert, R. MALT1: a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression. FEBS J. 282, 3286–3297 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Brechmann, M. et al. A PP4 holoenzyme balances physiological and oncogenic nuclear factor-kappa B signaling in T lymphocytes. Immunity 37, 697–708 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Shen, X.F., Zhao, Y., Jiang, J.P., Guan, W.X. & Du, J.F. Phosphatase Wip1 in immunity: an overview and update. Front. Immunol. 8, 8 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Través, P.G. et al. Pivotal role of protein tyrosine phosphatase 1B (PTP1B) in the macrophage response to pro-inflammatory and anti-inflammatory challenge. Cell Death Dis. 5, e1125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Shembade, N., Pujari, R., Harhaj, N.S., Abbott, D.W. & Harhaj, E.W. The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1. Nat. Immunol. 12, 834–843 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu, H. & Sun, S.C. Ubiquitin signaling in immune responses. Cell Res. 26, 457–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Abdul-Sater, A.A. et al. The signaling adaptor TRAF1 negatively regulates Toll-like receptor signaling and this underlies its role in rheumatic disease. Nat. Immunol. 18, 26–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Seymour, R.E. et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8, 416–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Teh, C.E. et al. Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nat. Commun. 7, 13353 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fiil, B.K. et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol. Cell 50, 818–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Keusekotten, K. et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312–1326 (2013). This paper, along with refs. 46 and 48 , provides evidence that OTULIN is a unique deubiquitinase that hydrolyzes M1-linked ubiquitin chains and negatively regulates NF-κB signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rivkin, E. et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318–324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Elliott, P.R. et al. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol. Cell 54, 335–348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Damgaard, R.B. et al. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166, 1215–1230.e1220 (2016). This article shows that OTULIN is essential in preventing TNF-dependent systemic inflammation in mice and humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, Q. et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc. Natl. Acad. Sci. USA 113, 10127–10132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Elliott, P.R. et al. SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol. Cell 63, 990–1005 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kupka, S. et al. SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Rep. 16, 2271–2280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wagner, S.A., Satpathy, S., Beli, P. & Choudhary, C. SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes. EMBO J. 35, 1868–1884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schlicher, L. et al. SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death. EMBO Rep. 17, 1485–1497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lork, M., Verhelst, K. & Beyaert, R. CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ. http://dx.doi.org/10.1038/cdd.2017.46 (2017).

  60. Dixit, V.M. et al. Tumor necrosis factor-α induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol. Chem. 265, 2973–2978 (1990).

    CAS  PubMed  Google Scholar 

  61. Wertz, I.E. et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 528, 370–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Ma, A. & Malynn, B.A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12, 774–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67–73 (2016). This study shows that A20 haploinsufficiency leads to the development of early-onset autoinflammatory disease in humans, which correlates with increased NF-κB activation and sustained levels of ubiquitinated A20 substrates.

    Article  CAS  PubMed  Google Scholar 

  64. Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Catrysse, L., Vereecke, L., Beyaert, R. & van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 35, 22–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Schuijs, M.J. et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 349, 1106–1110 (2015). This article identifies single-nucleotide polymorphisms in the A20-encoding gene as a risk factor for allergy and asthma development in children growing up on farms. The authors demonstrate that A20 mediates the protective effects of chronic low-dose endotoxin or farm-dust exposure in a mouse model of house-dust-mite-induced asthma.

    Article  CAS  PubMed  Google Scholar 

  67. Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565–1576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Onizawa, M. et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat. Immunol. 16, 618–627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maelfait, J. et al. A20 deficiency in lung epithelial cells protects against influenza A virus infection. PLoS Pathog. 12, e1005410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matmati, M. et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet. 43, 908–912 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Vande Walle, L. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Vereecke, L. et al. A20 controls intestinal homeostasis through cell-specific activities. Nat. Commun. 5, 5103 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Lin, A. & Karin, M. NF-kκB in cancer: a marked target. Semin. Cancer Biol. 13, 107–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Murphy, S.F. et al. Intestinal epithelial expression of TNFAIP3 results in microbial invasion of the inner mucus layer and induces colitis in IL-10-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G871–G882 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Lu, T.T. et al. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. Immunity 38, 896–905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De, A., Dainichi, T., Rathinam, C.V. & Ghosh, S. The deubiquitinase activity of A20 is dispensable for NF-κB signaling. EMBO Rep. 15, 775–783 (2014). The authors show that knock-in mice expressing mutant A20 that lacks deubiquitinase activity do not show an inflammatory phenotype and respond normally to LPS and TNF, thus challenging the prevailing view that the deubiquitinase activity of A20 is essential for its anti-inflammatory function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Verhelst, K. et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31, 3845–3855 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zilberman-Rudenko, J. et al. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease. Proc. Natl. Acad. Sci. USA 113, 1612–1617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song, L. et al. miR-486 sustains NF-κB activity by disrupting multiple NF-κB-negative feedback loops. Cell Res. 23, 274–289 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Gantier, M.P. et al. A miR-19 regulon that controls NF-κB signaling. Nucleic Acids Res. 40, 8048–8058 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Coornaert, B. et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 9, 263–271 (2008). This is the first report identifying MALT1 as a protease and describing A20 as a substrate.

    Article  CAS  PubMed  Google Scholar 

  83. Staal, J. et al. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 30, 1742–1752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Afonina, I.S. et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 17, 914–927 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Klei, L.R. et al. MALT1 protease activation triggers acute disruption of endothelial barrier integrity via CYLD cleavage. Cell Rep. 17, 221–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Demeyer, A., Staal, J. & Beyaert, R. Targeting MALT1 proteolytic activity in immunity, inflammation and disease: good or bad? Trends Mol. Med. 22, 135–150 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Kathania, M. et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat. Immunol. 17, 997–1004 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Jin, J. et al. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat. Immunol. 17, 259–268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gross, O., Thomas, C.J., Guarda, G. & Tschopp, J. The inflammasome: an integrated view. Immunol. Rev. 243, 136–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin. Exp. Rheumatol. 34 (Suppl. 98), 12–16 (2016).

    PubMed  Google Scholar 

  91. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166, 288–298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brydges, S.D. et al. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J. Clin. Invest. 123, 4695–4705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guo, H., Callaway, J.B. & Ting, J.P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Elliott, E.I. & Sutterwala, F.S. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol. Rev. 265, 35–52 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou, R., Yazdi, A.S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011). This study provides the first evidence of the critical role of mitochondria in NLRP3-inflammasome activation.

    Article  CAS  PubMed  Google Scholar 

  98. Zhong, Z. et al. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun. 4, 1611 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012). This is the first report showing that oxidized mitochondrial DNA activates the NLRP3 inflammasome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011). This study shows that autophagy inhibits the NLRP3 inflammasome through regulating the abundance of mitochondrial DNA.

    Article  CAS  PubMed  Google Scholar 

  101. Iyer, S.S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013). This study shows that the mitochondrial lipid cardiolipin is required for optimal NLRP3-inflammasome activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, T. et al. Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response. Cell Rep. 8, 974–982 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896–910 (2016). This study identifies the NF-κB–p62–mitophagy pathway as the key macrophage-intrinsic negative regulatory mechanism that keeps NLRP3 inflammasome activity in check.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Greten, F.R. et al. NF-k(B is a negative regulator of IL-1 (secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 130, 918–931 (2007). This study provides the first evidence that inhibition of NF-κB exacerbates NLRP3-inflammasome-dependent inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Umemura, A. et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29, 935–948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Moscat, J., Karin, M. & Diaz-Meco, M.T. p62 in cancer: signaling adaptor beyond autophagy. Cell 167, 606–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guarda, G. et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460, 269–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Reboldi, A. et al. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345, 679–684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mishra, B.B. et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14, 52–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Bauernfeind, F. et al. NLRP3 inflammasome activity is negatively controlled by miR-223. J. Immunol. 189, 4175–4181 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Netea, M.G., van de Veerdonk, F.L., van der Meer, J.W., Dinarello, C.A. & Joosten, L.A. Inflammasome-independent regulation of IL-1-family cytokines. Annu. Rev. Immunol. 33, 49–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Yan, Y. et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Malcomson, B. et al. Connectivity mapping (ssCMap) to predict A20-inducing drugs and their antiinflammatory action in cystic fibrosis. Proc. Natl. Acad. Sci. USA 113, E3725–E3734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of R.B. is supported by grants from the VIB, the Fund for Scientific Research Flanders (FWO), the Foundation Against Cancer and Ghent University (Concerted Research Actions, GOA). I.S.A. is supported by an FWO postdoctoral fellowship and an FWO research grant. Z.Z. was supported by a Cancer Research Irvington Postdoctoral Fellowship, a Prevent Cancer Foundation Board of Directors Award and an American Association for the Study of Liver Diseases (AASLD) Pinnacle Research Award. Research was supported by grants from the NIH (AI043477 and CA163798) to M.K., the Leukemia and Lymphoma Society SCOR (20132569) to M.K. and the Alliance for Lupus Research (257214) to M.K., who is supported as an American Cancer Research Professor and as the Ben and Wanda Hildyard Chair for Mitochondrial and Metabolic Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Beyaert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonina, I., Zhong, Z., Karin, M. et al. Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 18, 861–869 (2017). https://doi.org/10.1038/ni.3772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing