Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma

  • Nature Immunology volume 16, pages 12351244 (2015)
  • doi:10.1038/ni.3290
  • Download Citation


Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-κB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.

  • Subscribe to Nature Immunology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


Primary accessions


Referenced accessions

Gene Expression Omnibus


  1. 1.

    et al. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am. J. Pathol. 179, 37–45 (2011).

  2. 2.

    , , & Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

  3. 3.

    et al. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin. Cancer Res. 20, 2147–2158 (2014).

  4. 4.

    et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. Journal of clinical oncol. 2008, 26(27) –4410–4417.

  5. 5.

    et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 123, 2873–2892 (2013).

  6. 6.

    et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci. Rep. 2, 765 (2012).

  7. 7.

    & Tertiary lymphoid tissue: A gateway for T cells in the tumor microenvironment. OncoImmunology 3, e28850 (2014).

  8. 8.

    & New molecular therapies for hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol. 39, S80–S85 (2015).

  9. 9.

    Hepatocellular carcinoma. N. Engl. J. Med. 365, 1118–1127 (2011).

  10. 10.

    et al. Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition. Cell Metab. 20, 133–144 (2014).

  11. 11.

    , , , & The pathology of hepatitis C. Hepatology 15, 567–571 (1992).

  12. 12.

    Histopathology of HCV infection. Clin. Liver Dis. 1, 529–541 (1997).

  13. 13.

    et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 359, 1995–2004 (2008).

  14. 14.

    et al. Functional B-cell response in intrahepatic lymphoid follicles in chronic hepatitis C. Hepatology 30, 143–150 (1999).

  15. 15.

    , & Molecular profiling to predict hepatocellular carcinoma outcome. Expert Rev. Gastroenterol. Hepatol. 3, 101–103 (2009).

  16. 16.

    , , & Lymphoid organ development: from ontogeny to neogenesis. Nat. Immunol. 7, 344–353 (2006).

  17. 17.

    et al. Canonical NF-κB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 24, 729–739 (2006).

  18. 18.

    & DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis 26, 149–150 (2000).

  19. 19.

    et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

  20. 20.

    et al. Hepatic stem-like phenotype and interplay of Wnt/β-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell 14, 471–484 (2008).

  21. 21.

    et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155, 384–396 (2013).

  22. 22.

    , , , & Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 27, 407–414 (1998).

  23. 23.

    et al. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut 61, 1733–1743 (2012).

  24. 24.

    & Evolution of inflammatory diseases. Curr. Biol. 22, R733–R740 (2012).

  25. 25.

    , & Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

  26. 26.

    et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16, 295–308 (2009).

  27. 27.

    , & Lymphotoxin's link to carcinogenesis: friend or foe? from lymphoid neogenesis to hepatocellular carcinoma and prostate cancer. Adv. Exp. Med. Biol. 691, 231–249 (2011).

  28. 28.

    et al. T cell-derived lymphotoxin regulates liver regeneration. Gastroenterology 136, 694–704 (2009).

  29. 29.

    , , , & Tumor necrosis factor, lymphotoxin and cancer. IUBMB Life 62, 283–289 (2010).

  30. 30.

    et al. Lymphotoxin, NF-kB, and cancer: the dark side of cytokines. Dig. Dis. 30, 453–468 (2012).

  31. 31.

    et al. NF-kappaB activation by hepatitis B virus X (HBx) protein shifts the cellular fate toward survival. Cancer Lett. 184, 97–104 (2002).

  32. 32.

    et al. Hepatic expression of HCV RNA-dependent RNA polymerase triggers innate immune signaling and cytokine production. Mol. Cell 48, 313–321 (2012).

  33. 33.

    , & Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat. Rev. Cancer 13, 123–135 (2013).

  34. 34.

    et al. The intraportal lymphoid nodule and its environment in chronic active hepatitis C: an immunohistochemical study. Hepatology 17, 366–371 (1993).

  35. 35.

    , & Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu. Rev. Cell Dev. Biol. 30, 141–167 (2014).

  36. 36.

    & Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

  37. 37.

    , & N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol. Ther. 71, 57–81 (1996).

  38. 38.

    et al. Hepatocyte-specific activation of NF-κB does not aggravate chemical hepatocarcinogenesis in transgenic mice. J. Pathol. 217, 353–361 (2009).

  39. 39.

    et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

  40. 40.

    Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment. PLoS ONE 5, e15543 (2010).

  41. 41.

    & American Association for the Study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology 53, 1020–1022 (2011).

  42. 42.

    , , , & Identification of direct genomic targets downstream of the nuclear factor-kappaB transcription factor mediating tumor necrosis factor signaling. J. Biol. Chem. 280, 17435–17448 (2005).

  43. 43.

    , , & Divergent gene regulation and growth effects by NF-kappa B in epithelial and mesenchymal cells of human skin. Oncogene 22, 1955–1964 (2003).

  44. 44.

    , , & Positive and negative regulation of IκB kinase activity through IKKbeta subunit phosphorylation. Science 284, 309–313 (1999).

  45. 45.

    et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001).

  46. 46.

    et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8+ T cells and successful immunotherapy against chronic viral liver infection. Nat. Immunol. 14, 574–583 (2013).

  47. 47.

    et al. CGHcall: calling aberrations for array CGH tumor profiles. Bioinformatics 23, 892–894 (2007).

  48. 48.

    & A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007).

  49. 49.

    & CGHregions: dimension reduction for array CGH data with minimal information loss. Cancer Inform. 3, 55–63 (2007).

  50. 50.

    et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

Download references


We thank K. Kohno (Nara Institute of Science and Technology) for plasmids pBstN and p2335A-1; M.-A. Buendia (Institut Pasteur, France) for Myc-Trp53−/− liver tumors; V. Factor and S. Thorgeirsson (US National Institutes of Health) for anti-A6; and E. Cinnamon, M.-A. Buendia, K. Kohno, M. Ringelhan, R. Hillermann, D. Kull, I. Gat-Viks, Y. Steuerman, S. Itzkovitz and K. Bahar-Halpern for help and advice. Supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (E.P. and Y.B.-N.), the European Research Council (LIVERMICROENV to E.P.; PICHO to Y.B.-N.; and LiverCancerMechanism to M.H.), the Israel Science Foundation (E.P., Y.B.-N., I.S. and O.P.), the Israel Cancer Research Fund (Y.B.-N.), the Helmholtz alliance “preclinical comprehensive cancer center” Graduiertenkolleg (GRK482 to M.H.), Krebsliga Schweiz (Oncosuisse) (A.W.), Promedica Stiftung (A.W.), the US National Institutes of Health (CA118165, SRP ES010337 and AI0043477 to M.K.; and DK099558 to Y.H.), the Hildyard chair for Mitochondrial and Metabolic Diseases (M.K.), the Japan Society for the Promotion of Science (K.T.), Irma T Hirschl Trust (Y.H.), the FLAGS foundation (N.G.) and the Uehara Memorial Foundation (S.N.).

Author information


  1. Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

    • Shlomi Finkin
    • , Ilan Stein
    • , Michael Berger
    • , Yinon Ben-Neriah
    •  & Eli Pikarsky
  2. Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

    • Shlomi Finkin
    • , Ilan Stein
    • , Orit Pappo
    •  & Eli Pikarsky
  3. Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany.

    • Detian Yuan
    •  & Mathias Heikenwalder
  4. Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA.

    • Koji Taniguchi
    •  & Michael Karin
  5. Institute of Surgical Pathology, University and University-Hospital Zurich, Zurich, Switzerland.

    • Achim Weber
  6. Research Unit of Radiation Cytogenetics, Helmholtz-Zentrum München, Ingolstädter-Landstrasse, Neuherberg, Germany.

    • Kristian Unger
  7. Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA.

    • Jeffrey L Browning
  8. Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA.

    • Nicolas Goossens
    • , Shigeki Nakagawa
    •  & Yujin Hoshida
  9. Division of Gastroenterology & Hepatology Geneva University Hospital, Geneva, Switzerland.

    • Nicolas Goossens
  10. Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

    • Ganesh Gunasekaran
    •  & Myron E Schwartz
  11. Department of Hepatology, Toranomon Hospital, Tokyo, Japan.

    • Masahiro Kobayashi
    •  & Hiromitsu Kumada
  12. Max Delbrück Center for Molecular Medicine, Berlin, Germany.

    • Klaus Rajewsky
  13. Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany.

    • Mathias Heikenwalder


  1. Search for Shlomi Finkin in:

  2. Search for Detian Yuan in:

  3. Search for Ilan Stein in:

  4. Search for Koji Taniguchi in:

  5. Search for Achim Weber in:

  6. Search for Kristian Unger in:

  7. Search for Jeffrey L Browning in:

  8. Search for Nicolas Goossens in:

  9. Search for Shigeki Nakagawa in:

  10. Search for Ganesh Gunasekaran in:

  11. Search for Myron E Schwartz in:

  12. Search for Masahiro Kobayashi in:

  13. Search for Hiromitsu Kumada in:

  14. Search for Michael Berger in:

  15. Search for Orit Pappo in:

  16. Search for Klaus Rajewsky in:

  17. Search for Yujin Hoshida in:

  18. Search for Michael Karin in:

  19. Search for Mathias Heikenwalder in:

  20. Search for Yinon Ben-Neriah in:

  21. Search for Eli Pikarsky in:


K.R., M.Ka., M.H., Y.B.-N. and E.P. conceived of the study; S.F., D.Y. and I.S. designed and carried out most experiments and data analysis; K.T., A.W., K.U., N.G., S.N., G.G., M.E.S., M.Ko., H.K., M.B. and O.P. carried out additional experiments, contributed samples and performed data analysis; J.L.B. and K.R. supplied reagents; and S.F., D.Y., I.S., Y.H., M.Ka., M.H., Y.B.-N. and E.P. wrote the manuscript.

Competing interests

The authors have filed a provisional patent related to this manuscript.

Corresponding authors

Correspondence to Mathias Heikenwalder or Yinon Ben-Neriah or Eli Pikarsky.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–8 and Supplementary Tables 1–7


  1. 1.

    Progenitor cells egressing out of an ELS

    3D reconstruction of an ELS from DEN-treated IKKβ(EE)Hep mouse. Note green CD44v6+ progenitor cells egressing out of the ELS at multiple points.