Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effect of helminth-induced immunity on infections with microbial pathogens

Subjects

Abstract

Helminth infections are ubiquitous worldwide and can trigger potent immune responses that differ from and potentially antagonize host protective responses to microbial pathogens. In this Review we focus on the three main killers in infectious disease—AIDS, tuberculosis and malaria—and critically assesses whether helminths adversely influence host control of these diseases. We also discuss emerging concepts for how M2 macrophages and helminth-modulated dendritic cells can potentially influence the protective immune response to concurrent infections. Finally, we present evidence advocating for more efforts to determine how and to what extent helminths interfere with the successful control of specific concurrent coinfections.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: World map showing the geographic distribution of coinfection with helminths together with tuberculosis, malaria and/or HIV infection of adults.
Figure 2: Mechanisms of helminth-induced inhibition of effector CD4+ T cells and macrophages required for protective immunity to microbial pathogens.

Similar content being viewed by others

References

  1. Dickson, J.H. et al. The omnivorous Tyrolean Iceman: colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses. Phil. Trans. R. Soc. Lond. B 355, 1843–1849 (2000).

    Article  CAS  Google Scholar 

  2. Gulland, F.M. The role of nematode parasites in Soay sheep (Ovis aries L.) mortality during a population crash. Parasitology 105, 493–503 (1992).

    Article  PubMed  Google Scholar 

  3. Jackson, J.A., Friberg, I.M., Little, S. & Bradley, J.E. Review series on helminths, immune modulation and the hygiene hypothesis: immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies? Immunology 126, 18–27 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hotez, P.J. & Kamath, A. Neglected tropical diseases in sub-saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl. Trop. Dis. 3, e412 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. King, C.H. Health metrics for helminthic infections. Adv. Parasitol. 73, 51–69 (2010).

    Article  PubMed  Google Scholar 

  6. Schad, G.A. & Anderson, R.M. Predisposition to hookworm infection in humans. Science 228, 1537–1540 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Anthony, R.M., Rutitzky, L.I., Urban, J.F. Jr., Stadecker, M.J. & Gause, W.C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 7, 975–987 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allen, J.E. & Maizels, R.M. Diversity and dialogue in immunity to helminths. Nat. Rev. Immunol. 11, 375–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, F. et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med. 18, 260–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palm, N.W., Rosenstein, R.K. & Medzhitov, R. Allergic host defences. Nature 484, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Sabin, E.A., Araujo, M.I., Carvalho, E.M. & Pearce, E.J. Impairment of tetanus toxoid-specific Th1-like immune responses in humans infected with Schistosoma mansoni. J. Infect. Dis. 173, 269–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Elliott, A.M. et al. Effects of maternal and infant co-infections, and of maternal immunisation, on the infant response to BCG and tetanus immunisation. Vaccine 29, 247–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elliott, D.E. & Weinstock, J.V. Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann. NY Acad. Sci. 1247, 83–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Elliott, D.E. et al. Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. Eur. J. Immunol. 34, 2690–2698 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Zaccone, P. et al. Schistosoma mansoni egg antigens induce Treg that participate in diabetes prevention in NOD mice. Eur. J. Immunol. 39, 1098–1107 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Mishra, P.K., Patel, N., Wu, W., Bleich, D. & Gause, W.C. Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. Mucosal Immunol. 6, 297–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Gaze, S. et al. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog. 8, e1002520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Elias, D., Mengistu, G., Akuffo, H. & Britton, S. Are intestinal helminths risk factors for developing active tuberculosis? Trop. Med. Int. Health 11, 551–558 (2006).

    Article  PubMed  Google Scholar 

  19. Tristão-Sá, R., Ribeiro-Rodrigues, R., Johnson, L.T., Pereira, F.E. & Dietze, R. Intestinal nematodes and pulmonary tuberculosis. Rev. Soc. Bras. Med. Trop. 35, 533–535 (2002).

    Article  PubMed  Google Scholar 

  20. Resende Co, T., Hirsch, C.S., Toossi, Z., Dietze, R. & Ribeiro-Rodrigues, R. Intestinal helminth co-infection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin. Exp. Immunol. 147, 45–52 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wammes, L.J. et al. Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur. J. Immunol. 40, 437–442 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Verhagen, L.M. et al. Helminths and skewed cytokine profiles increase tuberculin skin test positivity in Warao Amerindians. Tuberculosis (Edinb.) 92, 505–512 (2012).

    Article  CAS  Google Scholar 

  23. Buck, A.A., Anderson, R.I., Kawata, K. & Hitchcock, J.C. Jr. Onchocerciasis: some new epidemiologic and clinical findings. Results of an epidemiologic study in the Republic of Chad. Am. J. Trop. Med. Hyg. 18, 217–230 (1969).

    Article  CAS  PubMed  Google Scholar 

  24. Rougemont, A., Boisson-Pontal, M.E., Pontal, P.G., Gridel, F. & Sangare, S. Tuberculin skin tests and B.C.G. vaccination in hyperendemic area of onchocerciasis. Lancet 1, 309 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Stewart, G.R. et al. Onchocerciasis modulates the immune response to mycobacterial antigens. Clin. Exp. Immunol. 117, 517–523 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Babu, S. et al. Attenuation of toll-like receptor expression and function in latent tuberculosis by coexistent filarial infection with restoration following antifilarial chemotherapy. PLoS Negl. Trop. Dis. 3, e489 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Babu, S. et al. Human type 1 and 17 responses in latent tuberculosis are modulated by coincident filarial infection through cytotoxic T lymphocyte antigen-4 and programmed death-1. J. Infect. Dis. 200, 288–298 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Elias, D. et al. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guerin (BCG) vaccination. Clin. Exp. Immunol. 123, 219–225 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pearlman, E., Kazura, J.W., Hazlett, F.E. Jr. & Boom, W.H. Modulation of murine cytokine responses to mycobacterial antigens by helminth-induced T helper 2 cell responses. J. Immunol. 151, 4857–4864 (1993).

    CAS  PubMed  Google Scholar 

  30. Sacco, R. et al. H1 granulomatous responses induced by active Mycobacterium avium infection switch to TH2 following challenge with Schistosoma mansoni. Clin. Immunol. 104, 274–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Frantz, F.G. et al. Helminth coinfection does not affect therapeutic effect of a DNA vaccine in mice harboring tuberculosis. PLoS Negl. Trop. Dis. 4, e700 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Elias, D., Akuffo, H., Thors, C., Pawlowski, A. & Britton, S. Low dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clin. Exp. Immunol. 139, 398–404 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Potian, J.A. et al. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J. Exp. Med. 208, 1863–1874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. du Plessis, N. et al. Acute helminth infection enhances early macrophage mediated control of mycobacterial infection. Mucosal Immunol. 6, 931–941 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Mahairas, G.G., Sabo, P.J., Hickey, M.J., Singh, D.C. & Stover, C.K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DiGiuseppe Champion, P.A. & Cox, J.S. Protein secretion systems in Mycobacteria. Cell. Microbiol. 9, 1376–1384 (2007).

    Article  CAS  Google Scholar 

  37. Al-Riyami, L., Wilson, E.H., Watson, C.A. & Harnett, W. T-helper type 1 responses to the BCG vaccine component PPD in mice are unaffected by the filarial nematode immunomodulatory molecule ES-62. J. Parasitol. 95, 1201–1204 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Lipner, E.M. et al. Coincident filarial, intestinal helminth, and mycobacterial infection: helminths fail to influence tuberculin reactivity, but BCG influences hookworm prevalence. Am. J. Trop. Med. Hyg. 74, 841–847 (2006).

    Article  PubMed  Google Scholar 

  39. Cooper, P.J., Guderian, R.H., Nutman, T.B. & Taylor, D.W. Human infection with Onchocerca volvulus does not affect the T helper cell phenotype of the cellular immune response to mycobacterial antigen. Trans. R. Soc. Trop. Med. Hyg. 91, 350–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Hubner, M.P. et al. Chronic helminth infection does not exacerbate Mycobacterium tuberculosis infection. PLoS Negl. Trop. Dis. 6, e1970 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rhodes, S.G. & Graham, S.P. Is 'timing' important for cytokine polarization? Trends Immunol. 23, 246–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Elias, D., Britton, S., Aseffa, A., Engers, H. & Akuffo, H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-β production. Vaccine 26, 3897–3902 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Elias, D. et al. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 23, 1326–1334 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Labeaud, A.D., Malhotra, I., King, M.J., King, C.L. & King, C.H. Do antenatal parasite infections devalue childhood vaccination? PLoS Negl. Trop. Dis. 3, e442 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Malhotra, I. et al. Helminth- and Bacillus Calmette-Guerin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J. Immunol. 162, 6843–6848 (1999).

    CAS  PubMed  Google Scholar 

  46. Malhotra, I. et al. In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. J. Clin. Invest. 99, 1759–1766 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Webb, E.L. et al. Effect of single-dose anthelmintic treatment during pregnancy on an infant's response to immunisation and on susceptibility to infectious diseases in infancy: a randomised, double-blind, placebo-controlled trial. Lancet 377, 52–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Degarege, A., Legesse, M., Medhin, G., Animut, A. & Erko, B. Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study. BMC Infect. Dis. 12, 291 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Le Hesran, J.Y. et al. Severe malaria attack is associated with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Trans. R. Soc. Trop. Med. Hyg. 98, 397–399 (2004).

    Article  PubMed  Google Scholar 

  50. Lyke, K.E. et al. Association of Schistosoma haematobium infection with protection against acute Plasmodium falciparum malaria in Malian children. Am. J. Trop. Med. Hyg. 73, 1124–1130 (2005).

    Article  PubMed  Google Scholar 

  51. Nacher, M. et al. Helminth infections are associated with protection from malaria-related acute renal failure and jaundice in Thailand. Am. J. Trop. Med. Hyg. 65, 834–836 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Nacher, M. et al. Ascaris lumbricoides infection is associated with protection from cerebral malaria. Parasite Immunol. 22, 107–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Dolo, H. et al. Filariasis attenuates anemia and proinflammatory responses associated with clinical malaria: a matched prospective study in children and young adults. PLoS Negl. Trop. Dis. 6, e1890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hartgers, F.C. et al. Responses to malarial antigens are altered in helminth-infected children. J. Infect. Dis. 199, 1528–1535 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Diallo, T.O. et al. Schistosomiasis coinfection in children influences acquired immune response against Plasmodium falciparum malaria antigens. PLoS ONE 5, e12764 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Metenou, S. et al. Patent filarial infection modulates malaria-specific type 1 cytokine responses in an IL-10-dependent manner in a filaria/malaria-coinfected population. J. Immunol. 183, 916–924 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Metenou, S. et al. Interferon regulatory factor modulation underlies the bystander suppression of malaria antigen-driven IL-12 and IFN-γ in filaria-malaria co-infection. Eur. J. Immunol. 42, 641–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Courtin, D. et al. Schistosoma haematobium infection affects Plasmodium falciparum-specific IgG responses associated with protection against malaria. Parasite Immunol. 33, 124–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Druilhe, P., Tall, A. & Sokhna, C. Worms can worsen malaria: towards a new means to roll back malaria? Trends Parasitol. 21, 359–362 (2005).

    Article  PubMed  Google Scholar 

  60. Roussilhon, C., Brasseur, P., Agnamey, P., Perignon, J.L. & Druilhe, P. Understanding human-Plasmodium falciparum immune interactions uncovers the immunological role of worms. PLoS ONE 5, e9309 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Su, Z., Segura, M., Morgan, K., Loredo-Osti, J.C. & Stevenson, M.M. Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. Infect. Immun. 73, 3531–3539 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Segura, M., Matte, C., Thawani, N., Su, Z. & Stevenson, M.M. Modulation of malaria-induced immunopathology by concurrent gastrointestinal nematode infection in mice. Int. J. Parasitol. 39, 1525–1532 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Webb, E.L., Ekii, A.O. & Pala, P. Epidemiology and immunology of helminth-HIV interactions. Curr. Opin. HIV AIDS 7, 245–253 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Bailer, R.T., Lee, B. & Montaner, L.J. IL-13 and TNF-α inhibit dual-tropic HIV-1 in primary macrophages by reduction of surface expression of CD4, chemokine receptors CCR5, CXCR4 and post-entry viral gene expression. Eur. J. Immunol. 30, 1340–1349 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Montaner, L.J. et al. Interleukin 13 inhibits human immunodeficiency virus type 1 production in primary blood-derived human macrophages in vitro. J. Exp. Med. 178, 743–747 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Cassol, E., Cassetta, L., Rizzi, C., Alfano, M. & Poli, G. M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. J. Immunol. 182, 6237–6246 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Denis, M. & Ghadirian, E. Interleukin 13 and interleukin 4 protect bronchoalveolar macrophages from productive infection with human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 10, 795–802 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Montaner, L.J., Bailer, R.T. & Gordon, S. IL-13 acts on macrophages to block the completion of reverse transcription, inhibit virus production, and reduce virus infectivity. J. Leukoc. Biol. 62, 126–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Mikovits, J.A. et al. IL-4 and IL-13 have overlapping but distinct effects on HIV production in monocytes. J. Leukoc. Biol. 56, 340–346 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Naif, H., Ho-Shon, M., Chang, J. & Cunningham, A.L. Molecular mechanisms of IL-4 effect on HIV expression in promonocytic cell lines and primary human monocytes. J. Leukoc. Biol. 56, 335–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Mouser, E.E., Pollakis, G. & Paxton, W.A. Effects of helminths and Mycobacterium tuberculosis infection on HIV-1: a cellular immunological perspective. Curr. Opin. HIV AIDS 7, 260–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Jourdan, P.M., Holmen, S.D., Gundersen, S.G., Roald, B. & Kjetland, E.F. HIV target cells in Schistosoma haematobium-infected female genital mucosa. Am. J. Trop. Med. Hyg. 85, 1060–1064 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Downs, J.A. et al. Urogenital schistosomiasis in women of reproductive age in Tanzania's Lake Victoria region. Am. J. Trop. Med. Hyg. 84, 364–369 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. McMichael, A.J., Borrow, P., Tomaras, G.D., Goonetilleke, N. & Haynes, B.F. The immune response during acute HIV-1 infection: clues for vaccine development. Nat. Rev. Immunol. 10, 11–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Gallagher, M. et al. The effects of maternal helminth and malaria infections on mother-to-child HIV transmission. AIDS 19, 1849–1855 (2005).

    Article  PubMed  Google Scholar 

  76. Steiner, K.L. et al. In utero activation of fetal memory T cells alters host regulatory gene expression and affects HIV susceptibility. Virology 425, 23–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Wolday, D. et al. Treatment of intestinal worms is associated with decreased HIV plasma viral load. J. Acquir. Immune Defic. Syndr. 31, 56–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Ndhlovu, P.D. et al. Prevalence of urinary schistosomiasis and HIV in females living in a rural community of Zimbabwe: does age matter? Trans. R. Soc. Trop. Med. Hyg. 101, 433–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Kjetland, E.F. et al. Association between genital schistosomiasis and HIV in rural Zimbabwean women. AIDS 20, 593–600 (2006).

    Article  PubMed  Google Scholar 

  80. Hosseinipour, M.C. et al. HIV and parasitic infection and the effect of treatment among adult outpatients in Malawi. J. Infect. Dis. 195, 1278–1282 (2007).

    Article  PubMed  Google Scholar 

  81. Elliott, A.M. et al. Associations between helminth infection and CD4+ T cell count, viral load and cytokine responses in HIV-1-infected Ugandan adults. Trans. R. Soc. Trop. Med. Hyg. 97, 103–108 (2003).

    Article  PubMed  Google Scholar 

  82. Brown, M. et al. Treatment of Schistosoma mansoni infection increases helminth-specific type 2 cytokine responses and HIV-1 loads in coinfected Ugandan adults. J. Infect. Dis. 191, 1648–1657 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Lawn, S.D. et al. The effect of treatment of schistosomiasis on blood plasma HIV-1 RNA concentration in coinfected individuals. AIDS 14, 2437–2443 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Sangaré, L.R., Herrin, B.R., John-Stewart, G. & Walson, J.L. Species-specific treatment effects of helminth/HIV-1 co-infection: a systematic review and meta-analysis. Parasitology 138, 1546–1558 (2011).

    Article  PubMed  CAS  Google Scholar 

  85. Maizels, R.M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat. Rev. Immunol. 3, 733–744 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Adams, V.J. et al. Recall of intestinal helminthiasis by HIV-infected South Africans and avoidance of possible misinterpretation of egg excretion in worm/HIV co-infection analyses. BMC Infect. Dis. 6, 88 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mkhize-Kwitshana, Z.L., Taylor, M., Jooste, P., Mabaso, M.L. & Walzl, G. The influence of different helminth infection phenotypes on immune responses against HIV in co-infected adults in South Africa. BMC Infect. Dis. 11, 273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stillwaggon, E. Living with uncertainty. Trends Parasitol. 28, 261–266 (2012).

    Article  PubMed  Google Scholar 

  89. Chan, D.J. Factors affecting sexual transmission of HIV-1: current evidence and implications for prevention. Curr. HIV Res. 3, 223–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Dreyfuss, M.L. & Fawzi, W.W. Micronutrients and vertical transmission of HIV-1. Am. J. Clin. Nutr. 75, 959–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Martinez, F.O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Murray, P.J. & Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. El Kasmi, K.C. et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 9, 1399–1406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Harris, J. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27, 505–517 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Potian, J.A. et al. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J. Exp. Med. 208, 1863–1874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Babu, S., Kumaraswami, V. & Nutman, T.B. Alternatively activated and immunoregulatory monocytes in human filarial infections. J. Infect. Dis. 199, 1827–1837 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Talaat, K.R., Bonawitz, R.E., Domenech, P. & Nutman, T.B. Preexposure to live Brugia malayi microfilariae alters the innate response of human dendritic cells to Mycobacterium tuberculosis. J. Infect. Dis. 193, 196–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Mosser, D.M. & Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Loke, P. et al. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J. Immunol. 179, 3926–3936 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Jenkins, S.J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. White, R.R. & Artavanis-Tsakonas, K. How helminths use excretory secretory fractions to modulate dendritic cells. Virulence 3, 668–677 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cervi, L., MacDonald, A.S., Kane, C., Dzierszinski, F. & Pearce, E.J. Cutting edge: dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J. Immunol. 172, 2016–2020 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Chaussabel, D. et al. Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102, 672–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Kane, C.M. et al. Helminth antigens modulate TLR-initiated dendritic cell activation. J. Immunol. 173, 7454–7461 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Klaver, E.J. et al. Trichuris suis-induced modulation of human dendritic cell function is glycan-mediated. Int. J. Parasitol. 43, 191–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Segura, M., Su, Z., Piccirillo, C. & Stevenson, M.M. Impairment of dendritic cell function by excretory-secretory products: a potential mechanism for nematode-induced immunosuppression. Eur. J. Immunol. 37, 1887–1904 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Everts, B. et al. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor. J. Exp. Med. 209, 1753–1767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Al-Riyami, L. & Harnett, W. Immunomodulatory properties of ES-62, a phosphorylcholine-containing glycoprotein secreted by Acanthocheilonema viteae. Endocr. Metab. Immune Disord. Drug Targets 12, 45–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Jankovic, D., Kullberg, M.C., Caspar, P. & Sher, A. Parasite-induced Th2 polarization is associated with down-regulated dendritic cell responsiveness to Th1 stimuli and a transient delay in T lymphocyte cycling. J. Immunol. 173, 2419–2427 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Semnani, R.T., Law, M., Kubofcik, J. & Nutman, T.B. Filaria-induced immune evasion: suppression by the infective stage of Brugia malayi at the earliest host-parasite interface. J. Immunol. 172, 6229–6238 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Aranzamendi, C. et al. Trichinella spiralis-secreted products modulate DC functionality and expand regulatory T cells in vitro. Parasite Immunol. 34, 210–223 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Massacand, J.C. et al. Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc. Natl. Acad. Sci. USA 106, 13968–13973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Walsh, K.P., Brady, M.T., Finlay, C.M., Boon, L. & Mills, K.H. Infection with a helminth parasite attenuates autoimmunity through TGF-β-mediated suppression of Th17 and Th1 responses. J. Immunol. 183, 1577–1586 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Setiawan, T. et al. Heligmosomoides polygyrus promotes regulatory T-cell cytokine production in the murine normal distal intestine. Infect. Immun. 75, 4655–4663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Grainger, J.R. et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J. Exp. Med. 207, 2331–2341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hartmann, W., Haben, I., Fleischer, B. & Breloer, M. Pathogenic nematodes suppress humoral responses to third-party antigens in vivo by IL-10-mediated interference with Th cell function. J. Immunol. 187, 4088–4099 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Amu, S. et al. Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J. Allergy Clin. Immunol. 125, 1114–1124 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Smith, K.A. et al. Chronic helminth infection promotes immune regulation in vivo through dominance of CD11cloCD103 dendritic cells. J. Immunol. 186, 7098–7109 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Li, Z. et al. The phenotype and function of naturally existing regulatory dendritic cells in nematode-infected mice. Int. J. Parasitol. 41, 1129–1137 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Belyaev, N.N. et al. Induction of an IL7-R+c-Kithi myelolymphoid progenitor critically dependent on IFN-γ signaling during acute malaria. Nat. Immunol. 11, 477–485 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Fenton, A., Lamb, T. & Graham, A.L. Optimality analysis of Th1/Th2 immune responses during microparasite-macroparasite co-infection, with epidemiological feedbacks. Parasitology 135, 841–853 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Moreno, Y. et al. Proteomic analysis of excretory-secretory products of Heligmosomoides polygyrus assessed with next-generation sequencing transcriptomic information. PLoS Negl. Trop. Dis. 5, e1370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lustigman, S. et al. A research agenda for helminth diseases of humans: the problem of helminthiases. PLoS Negl Trop Dis 6, e1582 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. World Health Organization. Global tuberculosis report 2012. World Health Organization http://www.who.int/tb/publications/global_report/en/ (2012).

  125. World Health Organization. WHO Map Production. Public Health Information and Geographic Information System (GIS). World Health Organization http://gamapserver.who.int/mapLibrary/Files/Maps/malaria_003.jpg (2012).

  126. Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS Report on the Global AIDS Epidemic 2010. UNAIDS http://www.unaids.org/globalreport/global_report.htm (2010).

Download references

Acknowledgements

We thank T. Nutman for critical comments on this manuscript. Supported by the US National Institutes of Health (AI031678 and AIO66188 to W.C.G., AI065663 and A1069395 to P.S. and AI83405 to G.S.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C Gause.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgame, P., Yap, G. & Gause, W. Effect of helminth-induced immunity on infections with microbial pathogens. Nat Immunol 14, 1118–1126 (2013). https://doi.org/10.1038/ni.2736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing