Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity

This article has been updated

Abstract

The gut mucosa hosts large numbers of activated lymphocytes that are exposed to stimuli from the diet, microbiota and pathogens. Although CD4+ T cells are crucial for defense, intestinal homeostasis precludes exaggerated responses to luminal contents, whether they are harmful or not. We investigated mechanisms used by CD4+ T cells to avoid excessive activation in the intestine. Using genetic tools to label and interfere with T cell–development transcription factors, we found that CD4+ T cells acquired the CD8-lineage transcription factor Runx3 and lost the CD4-lineage transcription factor ThPOK and their differentiation into the TH17 subset of helper T cells and colitogenic potential, in a manner dependent on transforming growth factor-β (TGF-β) and retinoic acid. Our results demonstrate considerable plasticity in the CD4+ T cell lineage that allows chronic exposure to luminal antigens without pathological inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reciprocal regulation of ThPOK and Runx3 in intestinal tissue.
Figure 2: TGF-β and RA concomitantly induce Treg cells and ThPOKloRunx3hiCD4+ T cells.
Figure 3: Signaling by TGF-β and RA in intestinal CD4+ T cells is required for downmodulation of ThPOK expression and for CD8α expression in vivo.
Figure 4: Loss of ThPOK by activated CD4+ T cells hinders the development of colitis.
Figure 5: Continuous ThPOK expression is required for the inflammatory activity of CD4+ T cells.
Figure 6: Upregulation of Runx3 expression precedes the downmodulation of ThPOK expression and the expression of CD8αα by intestinal CD4+ T cells.
Figure 7: Runx3 expression by CD4+ T cells inversely correlates with their inflammatory potential.
Figure 8: Enhanced resistance of Cd4Runx3) mice to infection with C. rodentium.

Similar content being viewed by others

Change history

  • 28 January 2013

    In the version of this article initially published online, the black and red labels in Figure 2c were incorrect. The correct labels are "CD4+ (–)" (black label) and "CD4+CD8αα+ + TGF-β" (red label). The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. He, X., Park, K. & Kappes, D.J. The role of ThPOK in control of CD4/CD8 lineage commitment. Annu. Rev. Immunol. 28, 295–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Xiong, Y. & Bosselut, R. CD4–CD8 differentiation in the thymus: connecting circuits and building memories. Curr. Opin. Immunol. 24, 139–145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sakaguchi, S. et al. The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nat. Immunol. 11, 442–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Egawa, T. & Littman, D.R. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat. Immunol. 9, 1131–1139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, L. et al. The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity 29, 876–887 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II–restricted cytotoxic T lymphocytes. Nat. Immunol. advance online publication, doi:10.1038/ni2523 (20 January 2013).

  10. Denning, T.L. et al. Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J. Immunol. 178, 4230–4239 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Yeh, J.H., Sidhu, S.S. & Chan, A.C. Regulation of a late phase of T cell polarity and effector functions by Crtam. Cell 132, 846–859 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nat. Immunol. 5, 597–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Ahern, P.P. et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33, 279–288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sujino, T. et al. Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology 141, 1014–1023 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Shi, M.J. & Stavnezer, J. CBFα3 (AML2) is induced by TGF-β1 to bind and activate the mouse germline Ig alpha promoter. J. Immunol. 161, 6751–6760 (1998).

    CAS  PubMed  Google Scholar 

  16. Grueter, B. et al. Runx3 regulates integrin αE/CD103 and CD4 expression during development of CD4/CD8+ T cells. J. Immunol. 175, 1694–1705 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Mucida, D. et al. Retinoic acid can directly promote TGF-β-mediated Foxp3+ Treg cell conversion of naive T cells. Immunity 30, 471–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi, H. et al. TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat. Immunol. 13, 587–595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Konkel, J.E. et al. Control of the development of CD8((+ intestinal intraepithelial lymphocytes by TGF-β. Nat. Immunol. 12, 312–319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lazarevic, V. & Glimcher, L.H. T-bet in disease. Nat. Immunol. 12, 597–606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, M.O., Sanjabi, S. & Flavell, R.A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Mucida, D. et al. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Invest. 115, 1923–1933 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rajaii, F., Bitzer, Z.T., Xu, Q. & Sockanathan, S. Expression of the dominant negative retinoid receptor, RAR403, alters telencephalic progenitor proliferation, survival, and cell fate specification. Dev. Biol. 316, 371–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Mucida, D., Park, Y. & Cheroutre, H. From the diet to the nucleus: vitamin A and TGF-β join efforts at the mucosal interface of the intestine. Semin. Immunol. 21, 14–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. DePaolo, R.W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hall, J.A. et al. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor α. Immunity 34, 435–447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pino-Lagos, K. et al. A retinoic acid-dependent checkpoint in the development of CD4+ T cell-mediated immunity. J. Exp. Med. 208, 1767–1775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klinger, M. et al. Thymic OX40 expression discriminates cells undergoing strong responses to selection ligands. J. Immunol. 182, 4581–4589 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Naoe, Y. et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbfβ binding to the Il4 silencer. J. Exp. Med. 204, 1749–1755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-beta signalling. Nature 467, 967–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leppkes, M. et al. RORγ-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 136, 257–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. O'Connor, W. Jr. et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10, 603–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ono, Y. et al. T-helper 17 and interleukin-17-producing lymphoid tissue inducer-like cells make different contributions to colitis in mice. Gastroenterology 143, 1288–1297 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, F., Meng, G. & Strober, W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 9, 1297–1306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lazarevic, V. et al. T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat. Immunol. 12, 96–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Muroi, S. et al. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nat. Immunol. 9, 1113–1121 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Curotto de Lafaille, M.A. et al. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29, 114–126 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Velinzon and Y. Shatalina for sorting cells; members of the Nussenzweig, Steinman, Marraffini and Tavazoie laboratories and employees of the The Rockefeller University for assistance; R. Noelle (Dartmouth University) for dnRaralsl/lsl mice; D. Littman (New York University) for Runx3-YFP mice; L. Glimcher (Cornell University) for Tbx21 vectors; and L. Marraffini, S. Tavazoie, G. Kim, M. Kronenberg, H. Cheroutre and members of the Mucida laboratory, particularly L. Feighery, for discussions and critical reading and editing of the manuscript. Supported by the Ellison Medical Foundation (D.M.), the Irma T. Hirschl Trust (D.M.), the Crohn's & Colitis Foundation of America (D.M.), the US National Institutes of Health (R01 DK093674-01 to D.M.), the Leona M. and Harry B. Helmsley Charitable Trust (D.M.), Fundação de Amparo à Pesquisa do Estado de São Paulo (F.A.C.-P.) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (F.A.C.-P.).

Author information

Authors and Affiliations

Authors

Contributions

D.M. conceived of and supervised this study and wrote the paper; B.S.R. and D.M. designed experiments; B.S.R., A.R. and D.M. did experiments; B.S.R. prepared figures and helped with manuscript preparation; F.A.C.-P. analyzed and assigned scores to intestinal tissue for inflammation and helped with manuscript preparation; and I.T. provided mouse strains and constructs for overexpression of genes and helped with manuscript preparation.

Corresponding author

Correspondence to Daniel Mucida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 996 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, B., Rogoz, A., Costa-Pinto, F. et al. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat Immunol 14, 271–280 (2013). https://doi.org/10.1038/ni.2518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing