Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs

Abstract

The protein Tir (translocated intimin receptor) in enteric bacteria shares sequence similarity with the host cellular immunoreceptor tyrosine-based inhibition motifs (ITIMs). Despite the importance of Tir in pedestal formation, relatively little is known about the role of Tir and its ITIMs in the regulation of the host immune response. Here we demonstrate that Tir from enteropathogenic Escherichia coli (EPEC) interacted with the host cellular tyrosine phosphatase SHP-1 in an ITIM phosphorylation–dependent manner. The association of Tir with SHP-1 facilitated the recruitment of SHP-1 to the adaptor TRAF6 and inhibited the ubiquitination of TRAF6. Moreover, the ITIMs of Tir suppressed EPEC-stimulated expression of proinflammatory cytokines and inhibited intestinal immunity to infection with Citrobacter rodentium. Our findings identify a previously unknown mechanism by which bacterial ITIM-containing proteins can inhibit innate immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of Tir with SHP-1.
Figure 2: ITIM phosphorylation–dependent interaction of Tir with SHP-1.
Figure 3: Tir facilitates the binding of TRAF6 to SHP-1 and prevents ubiquitination of TRAF6.
Figure 4: Specific inhibition of cytokine production by EPEC (JPN15) Tir.
Figure 5: ITIM-dependent inhibition of cytokine production.
Figure 6: Inhibition of cytokine production via SHP-1.
Figure 7: Tir inhibits immune responses to infection with C. rodentium.
Figure 8: Specific inhibition of intestinal immunity by Tir.

Similar content being viewed by others

References

  1. Nataro, J.P. & Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, H.D. & Frankel, G. Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol. Rev. 29, 83–98 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. Vallance, B.A. & Finlay, B.B. Exploitation of host cells by enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 8799–8806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eckmann, L. Animal models of inflammatory bowel disease: lessons from enteric infections. Ann. NY Acad. Sci. 1072, 28–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. de Grado, M. et al. Identification of the intimin-binding domain of Tir of enteropathogenic Escherichia coli. Cell. Microbiol. 1, 7–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Luo, Y. et al. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405, 1073–1077 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Hayward, R.D., Leong, J.M., Koronakis, V. & Campellone, K.G. Exploiting pathogenic Escherichia coli to model transmembrane receptor signaling. Nat. Rev. Microbiol. 4, 358–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Campellone, K.G. Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J. 277, 2390–2402 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Beutler, B.A. TLRs and innate immunity. Blood 113, 1399–1407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Palm, N.W. & Medzhitov, R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227, 221–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Salazar-Gonzalez, H. & Navarro-Garcia, F. Intimate adherence by enteropathogenic Escherichia coli modulates TLR5 localization and proinflammatory host response in intestinal epithelial cells. Scand. J. Immunol. 73, 268–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Khan, M.A. et al. Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice. Infect. Immun. 74, 2522–2536 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lebeis, S.L., Bommarius, B., Parkos, C.A., Sherman, M.A. & Kalman, D. TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J. Immunol. 179, 566–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Gibson, D.L. et al. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell. Microbiol. 10, 388–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Gibson, D.L. et al. MyD88 signaling plays a critical role in host defense by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cell. Microbiol. 10, 618–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Gonçalves, N.S. et al. Critical role for tumor necrosis factor alpha in controlling the number of lumenal pathogenic bacteria and immunopathology in infectious colitis. Infect. Immun. 69, 6651–6659 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dann, S.M. et al. IL-6-dependent mucosal protection prevents establishment of a microbial niche for attaching/effacing lesion-forming enteric bacterial pathogens. J. Immunol. 180, 6816–6826 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Barrow, A.D. & Trowsdale, J. You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signaling. Eur. J. Immunol. 36, 1646–1653 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Daëron, M., Jaeger, S., Du Pasquier, L. & Vivier, E. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol. Rev. 224, 11–43 (2008).

    Article  PubMed  Google Scholar 

  22. Zhang, J., Somani, A.K. & Siminovitch, K.A. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin. Immunol. 12, 361–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Neel, B.G., Gu, H. & Pao, L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA. Science 295, 683–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Smith, K., Humphreys, D., Hume, P.J. & Koronakis, V. Enteropathogenic Escherichia coli recruits the cellular inositol phosphatase SHIP2 to regulate actin-pedestal formation. Cell Host Microbe 7, 13–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Inoue, J., Gohda, J. & Akiyama, T. Characteristics and biological functions of TRAF6. Adv. Exp. Med. Biol. 597, 72–79 (2007).

    Article  PubMed  Google Scholar 

  27. Chen, Z.J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia, Z.P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dean, P. & Kenny, B. The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr. Opin. Microbiol. 12, 101–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marchés, O. et al. Role of tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2. Infect. Immun. 68, 2171–2182 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Deng, W.Y. et al. Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol. Microbiol. 48, 95–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Nadler, C. et al. The type III secretion effector NleE inhibits NF-κB activation. PLoS Pathog. 6, e1000743 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Newton, H.J. et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-κB p65. PLoS Pathog. 6, e1000898 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Vossenkämper, A. et al. Inhibition of NF-κB signaling in human dendritic cells by the enteropathogenic Escherichia coli effector protein NleE. J. Immunol. 185, 4118–4127 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, L. et al. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature 481, 204–208 (2011).

    Article  PubMed  CAS  Google Scholar 

  36. Royan, S.V. et al. Enteropathogenic E. coli non-LEE encoded effectors NleH1 and NleH2 attenuate NF-κB activation. Mol. Microbiol. 78, 1232–1245 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sham, H.P. et al. Attaching and effacing bacterial effector NleC suppresses epithelial inflammatory responses by inhibiting NF-κB and p38 mitogen-activated protein kinase activation. Infect. Immun. 79, 3552–3562 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruchaud-Sparagano, M.H., Mühlen, S., Dean, P. & Kenny, B. The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors. PLoS Pathog. 7, e1002414 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Campellone, K.G. et al. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J. Cell Biol. 164, 407–416 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Campellone, K.G. & Leong, J.M. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol. Micobiol. 56, 416–432 (2005).

    Article  CAS  Google Scholar 

  41. Phillips, N., Hayward, R.D. & Koronakis, V. Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nat. Cell Biol. 6, 618–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Nandan, D., Lo, R. & Reiner, N.E. Activation of phosphotyrosine phosphatase activity attenuates mitogen-activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani. Infect. Immun. 67, 4055–4063 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Z., Jimi, E. & Bothwell, A.L. Receptor activator of NF-κB ligand stimulates recruitment of SHP-1 to the complex containing TNFR-associated factor 6 that regulates osteoclastogenesis. J. Immunol. 171, 3620–3626 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. An, H. et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat. Immunol. 9, 542–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Gu, H., Griffin, J.D. & Neel, B.G. Characterization of two SHP-2-associated binding proteins and potential substrates in hematopoietic cells. J. Biol. Chem. 272, 16421–16430 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Campellone, K.G., Giese, N., Tipper, O.J. & Leong,, J.M. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol. Microbiol. 43, 1227–1241 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kong, L. et al. An essential role for RIG-I in toll-like receptor-stimulated phagocytosis. Cell Host Microbe 6, 150–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Kong, X.N. et al. LPS-induced down-regulation of signal regulatory protein α contributes to innate immune activation in macrophages. J. Exp. Med. 204, 2719–2731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu, M. et al. An essential function for β-arrestin 2 in the inhibitory signaling of natural killer cells. Nat. Immunol. 9, 898–907 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Song, X.Y. et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat. Immunol. 12, 1151–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Leong (University of Massachusetts Medical School) for cDNA encoding Tir and for JPN15 and JPN15ΔTir; R. Longnecker (Northwestern University) for cDNA encoding LMP2A; H. Gu (University of Colorado Denver) for the SHP-1 construct; B. Finlay and W. Deng (University of British Columbia) for C. rodentium, C. rodentiumΔTir, EPEC strain E2348/69 and ΔescN and technical help; X. Song for help with animal infection; and members of the B. Ge laboratory for discussions and technical assistance. Supported by the National Basic Research Program of China (973 Programs 2012CB578100 and 2011CB505000), the National Natural Science Foundation of China (project 31030028) and the Science and Technology Commission of Shanghai Municipality (Program 10JC1416400).

Author information

Authors and Affiliations

Authors

Contributions

D.Y., X.C. and B.G. designed this study; D.Y. did experiments, assisted by X.W. and L.L.; D.Y. and B.G. analyzed the data and wrote the manuscript; and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Baoxue Ge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 2427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, D., Wang, X., Luo, L. et al. Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs. Nat Immunol 13, 1063–1071 (2012). https://doi.org/10.1038/ni.2417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing