Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonclassical MHC class Ib–restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum

Abstract

The aminopeptidase ERAAP is essential for trimming peptides presented by major histocompatibility complex (MHC) class I molecules. Inhibition of ERAAP by cytomegalovirus results in evasion of the immune response by this virus, and polymorphisms in ERAAP are associated with autoimmune disorders. How normal ERAAP function is monitored is unknown. We found that inhibition of ERAAP rapidly induced presentation of the peptide FYAEATPML (FL9) by the MHC class Ib molecule Qa-1b. Antigen-experienced T cells specific for the Qa-1b–FL9 complex were frequent in naive mice. Wild-type mice immunized with ERAAP-deficient cells mounted a potent CD8+ T cell response specific for Qa-1b–FL9. MHC class Ib–restricted cytolytic effector cells specifically eliminated ERAAP-deficient cells in vitro and in vivo. Thus, nonclassical Qa-1b–peptide complexes direct cytotoxic T cells to targets with defective antigen processing in the endoplasmic reticulum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wild-type CD8+ T cells respond to pMHCIa and pMHCIb expressed by ERAAP-KO cells.
Figure 2: The gene encoding Fam49b is the source of the antigen presented by Qa-1b in the absence of ERAAP function.
Figure 3: FL9 is the naturally processed peptide presented by Qa-1b molecules.
Figure 4: The Qa-1b–FL9 complex is an immunodominant T cell ligand.
Figure 5: QFL T cells are antigen experienced in naive mice.
Figure 6: Effector and memory QFL T cells are generated in response to ERAAP-KO cells.
Figure 7: Wild-type CTLs specifically eliminate ERAAP-KO cells expressing unique pMHCIb complexes.

Similar content being viewed by others

References

  1. Shastri, N., Schwab, S. & Serwold, T. Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol. 20, 463–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Williams, M.A. & Bevan, M.J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Peaper, D.R. & Cresswell, P. Regulation of MHC class I assembly and peptide binding. Annu. Rev. Cell Dev. Biol. 24, 343–368 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Rodgers, J.R. & Cook, R.G. MHC class Ib molecules bridge innate and acquired immunity. Nat. Rev. Immunol. 5, 459–471 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Strong, R.K. et al. HLA-E allelic variants. Correlating differential expression, peptide affinities, crystal structures, and thermal stabilities. J. Biol. Chem. 278, 5082–5090 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hansen, T.H. & Bouvier, M. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol. 9, 503–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J. & Ploegh, H.L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Van Kaer, L., Ashton-Rickardt, P.G., Ploegh, H.L. & Tonegawa, S. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD48+ T cells. Cell 71, 1205–1214 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Fruci, D. et al. Altered expression of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in transformed non-lymphoid human tissues. J. Cell Physiol. 216, 742–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, S. et al. Human cytomegalovirus microRNA miR-US4–1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1. Nat. Immunol. 12, 984–991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Evans, D.M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strange, A. et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hammer, G.E., Gonzalez, F., Champsaur, M., Cado, D. & Shastri, N. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat. Immunol. 7, 103–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Yan, J. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med. 203, 647–659 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. York, I.A., Brehm, M.A., Zendzian, S., Towne, C.F. & Rock, K.L. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc. Natl. Acad. Sci. USA 103, 9202–9207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hammer, G.E., Gonzalez, F., James, E., Nolla, H. & Shastri, N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat. Immunol. 8, 101–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Vugmeyster, Y. et al. Major histocompatibility complex (MHC) class I KbDb−/− deficient mice possess functional CD8+ T cells and natural killer cells. Proc. Natl. Acad. Sci. USA 95, 12492–12497 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Zijlstra, M. et al. β2-microglobulin deficient mice lack CD48+ cytolytic T cells. Nature 344, 742–746 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Sanderson, S. & Shastri, N. LacZ inducible, antigen/MHC-specific T cell hybrids. Int. Immunol. 6, 369–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Hu, D. et al. Analysis of regulatory CD8+ T cells in Qa-1-deficient mice. Nat. Immunol. 5, 516–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Serwold, T., Gaw, S. & Shastri, N. ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat. Immunol. 2, 644–651 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lu, L., Werneck, M.B. & Cantor, H. The immunoregulatory effects of Qa-1. Immunol. Rev. 212, 51–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Aldrich, C.J. et al. Identification of a TAP-dependent leader peptide recognized by alloreactive T cells specific for a class 1b antigen. Cell 79, 649–658 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Karttunen, J., Sanderson, S. & Shastri, N. Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc. Natl. Acad. Sci. USA 89, 6020–6024 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mach, N. et al. Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res. 60, 3239–3246 (2000).

    CAS  PubMed  Google Scholar 

  28. Falk, K., Rötzschke, O. & Rammensee, H.G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348, 248–251 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Malarkannan, S., Goth, S., Buchholz, D.R. & Shastri, N. The role of MHC class I molecules in the generation of endogenous peptide/MHC complexes. J. Immunol. 154, 585–598 (1995).

    CAS  PubMed  Google Scholar 

  30. Moon, J.J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Obar, J.J., Khanna, K.M. & Lefrancois, L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28, 859–869 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moon, J.J. et al. Tracking epitope-specific T cells. Nat. Protoc. 4, 565–581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haluszczak, C. et al. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206, 435–448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kerksiek, K.M., Busch, D.H., Pilip, I.M., Allen, S.E. & Pamer, E.G. H2–M3-restricted T cells in bacterial infection: rapid primary but diminished memory responses. J. Exp. Med. 190, 195–204 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cho, H., Choi, H.J., Xu, H., Felio, K. & Wang, C.R. Nonconventional CD8+ T cell responses to Listeria infection in mice lacking MHC class Ia and H2–M3. J. Immunol. 186, 489–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Bouwer, H.G., Barry, R.A. & Hinrichs, D.J. Lack of expansion of major histocompatibility complex class Ib-restricted effector cells following recovery from secondary infection with the intracellular pathogen Listeria monocytogenes. Infect. Immun. 69, 2286–2292 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cifaldi, L. et al. Natural killer cells efficiently reject lymphoma silenced for the endoplasmic reticulum aminopeptidase associated with antigen processing. Cancer Res. 71, 1597–1606 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Blanchard, N. et al. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells. J. Immunol. 184, 3033–3042 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Petroziello, J. et al. Suppression subtractive hybridization and expression profiling identifies a unique set of genes overexpressed in non-small-cell lung cancer. Oncogene 23, 7734–7745 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Gilli, F. et al. Learning from nature: pregnancy changes the expression of inflammation-related genes in patients with multiple sclerosis. PLoS ONE 5, e8962 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yamagata, T., Benoist, C. & Mathis, D. A shared gene-expression signature in innate-like lymphocytes. Immunol. Rev. 210, 52–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Urdahl, K.B., Sun, J.C. & Bevan, M.J. Positive selection of MHC class Ib-restricted CD8+ T cells on hematopoietic cells. Nat. Immunol. 3, 772–779 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cho, H., Bediako, Y., Xu, H., Choi, H.J. & Wang, C.R. Positive selecting cell type determines the phenotype of MHC class Ib-restricted CD8+ T cells. Proc. Natl. Acad. Sci. USA 108, 13241–13246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oliveira, C.C. et al. The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects. J. Exp. Med. 207, 207–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Tetramer Core Facility of the US National Institutes of Health for tetramer reagents; K. Söderstrom and E. Engleman (Stanford University) for Qa-1b-deficient mice generated by H. Cantor and colleagues (Harvard University); H. Cantor (Harvard University) for lentiviral vectors expressing Qa-1b; D. King for peptide synthesis; H. Nolla for assistance with cell sorting; K.C. Lind and A.H. Bakker for discussions and comments on the manuscript; and H. Dani for technical assistance. Supported by Irvington Institute Fellowship Program of the Cancer Research Institute (N.A.N.) and the US National Institutes of Health (N.S.).

Author information

Authors and Affiliations

Authors

Contributions

N.A.N. and N.S. designed the study and wrote the manuscript; and N.A.N. and F.G. did the experiments.

Corresponding author

Correspondence to Nilabh Shastri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, N., Gonzalez, F. & Shastri, N. Nonclassical MHC class Ib–restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. Nat Immunol 13, 579–586 (2012). https://doi.org/10.1038/ni.2282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing