Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks

Abstract

Lymph node stromal cells (LNSCs) closely regulate immunity and self-tolerance, yet key aspects of their biology remain poorly elucidated. Here, comparative transcriptomic analyses of mouse LNSC subsets demonstrated the expression of important immune mediators, growth factors and previously unknown structural components. Pairwise analyses of ligands and cognate receptors across hematopoietic and stromal subsets suggested a complex web of crosstalk. Fibroblastic reticular cells (FRCs) showed enrichment for higher expression of genes relevant to cytokine signaling, relative to their expression in skin and thymic fibroblasts. LNSCs from inflamed lymph nodes upregulated expression of genes encoding chemokines and molecules involved in the acute-phase response and the antigen-processing and antigen-presentation machinery. Poorly studied podoplanin (gp38)-negative CD31 LNSCs showed similarities to FRCs but lacked expression of interleukin 7 (IL-7) and were identified as myofibroblastic pericytes that expressed integrin α7. Together our data comprehensively describe the transcriptional characteristics of LNSC subsets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for sorting LNSCs and confirmation of microarray results.
Figure 2: Unbiased analysis of LNSCs provides insight into FRC function.
Figure 3: Expression of cytokines, growth factors and immunologically relevant receptors by stromal and hematopoietic cell subsets.
Figure 4: Transcriptional insights into the lymph-node conduit network.
Figure 5: Transcriptional specialization of FRCs, ThFs and SFs.
Figure 6: Cadherin-11 identifies junctions between lymph-node fibroblastic reticular cells.
Figure 7: DNCs are contractile pericytes.
Figure 8: LNSC response to inflammation.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  CAS  Google Scholar 

  3. Fletcher, A.L., Malhotra, D. & Turley, S.J. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol. 32, 12–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, J.W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8, 181–190 (2007).

    Article  CAS  Google Scholar 

  5. Gardner, J.M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321, 843–847 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Fletcher, A.L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Cohen, J.N. et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207, 681–688 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Pham, T.H. et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207, 17–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Roozendaal, R., Mebius, R.E. & Kraal, G. The conduit system of the lymph node. Int. Immunol. 20, 1483–1487 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Palframan, R.T. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1373 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Itano, A.A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    Article  CAS  Google Scholar 

  13. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Link, A. et al. Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. Am. J. Pathol. 178, 1662–1675 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, W.W., Sherman, B.T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  17. Mackay, F. & Leung, H. The role of the BAFF/APRIL system on T cell function. Semin. Immunol. 18, 284–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Wei, S. et al. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J. Leukoc. Biol. 88, 495–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Watowich, S.S. & Liu, Y.J. Mechanisms regulating dendritic cell specification and development. Immunol. Rev. 238, 76–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Chyou, S. et al. Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J. Immunol. 181, 3887–3896 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Liston, A. et al. Inhibition of CCR6 function reduces the severity of experimental autoimmune encephalomyelitis via effects on the priming phase of the immune response. J. Immunol. 182, 3121–3130 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kalamajski, S. & Oldberg, A. The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol. 29, 248–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Schvartz, I., Seger, D. & Shaltiel, S. Vitronectin. Int. J. Biochem. Cell Biol. 31, 539–544 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. van den Berg, T.K., van der Ende, M., Dopp, E.A., Kraal, G. & Dijkstra, C.D. Localization of beta 1 integrins and their extracellular ligands in human lymphoid tissues. Am. J. Pathol. 143, 1098–1110 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Page-McCaw, A., Ewald, A.J. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8, 221–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Chang, S.K., Gu, Z. & Brenner, M.B. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol. Rev. 233, 256–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Moll, R. et al. Endothelial and virgultar cell formations in the mammalian lymph node sinus: endothelial differentiation morphotypes characterized by a special kind of junction (complexus adhaerens). Cell Tissue Res. 335, 109–141 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Yamamura, H., Hirano, N., Koyama, H., Nishizawa, Y. & Takahashi, K. Loss of smooth muscle calponin results in impaired blood vessel maturation in the tumor-host microenvironment. Cancer Sci. 98, 757–763 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Mayer, U. et al. Absence of integrin α7 causes a novel form of muscular dystrophy. Nat. Genet. 17, 318–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Fitzgerald, K.A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Khan, K.D., Lindwall, G., Maher, S.E. & Bothwell, A.L. Characterization of promoter elements of an interferon-inducible Ly-6E/A differentiation antigen, which is expressed on activated T cells and hematopoietic stem cells. Mol. Cell. Biol. 10, 5150–5159 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Li, C. & Chan, Y.R. Lipocalin 2 regulation and its complex role in inflammation and cancer. Cytokine 56, 435–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Fontaine, C. et al. The nuclear receptor Rev-erbα is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages. Mol. Endocrinol. 22, 1797–1811 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Young, B.B., Gordon, M.K. & Birk, D.E. Expression of type XIV collagen in developing chicken tendons: association with assembly and growth of collagen fibrils. Dev. Dyn. 217, 430–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Danielson, K.G. et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136, 729–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Bailey, A.J. Molecular mechanisms of ageing in connective tissues. Mech. Ageing Dev. 122, 735–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Gilbert, D.L., Okano, T., Miyata, T. & Kim, S.W. Macromolecular diffusion through collagen membranes. Int. J. Pharm. 47, 79–88 (1988).

    Article  CAS  Google Scholar 

  38. Brennan, K. & Bowie, A.G. Activation of host pattern recognition receptors by viruses. Curr. Opin. Microbiol. 13, 503–507 (2010).

    Article  CAS  Google Scholar 

  39. Brass, A.L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243–1254 (2009).

    Article  PubMed  Google Scholar 

  40. Mueller, S.N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl. Acad. Sci. USA 104, 15430–15435 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Tomei, A.A., Siegert, S., Britschgi, M.R., Luther, S.A. & Swartz, M.A. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 183, 4273–4283 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Lämmermann, T. & Sixt, M. The microanatomy of T-cell responses. Immunol. Rev. 221, 26–43 (2008).

    Article  PubMed  Google Scholar 

  43. Chang, S.K. et al. Cadherin-11 regulates fibroblast inflammation. Proc. Natl. Acad. Sci. USA 108, 8402–8407 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Kenins, L., Gill, J.W., Boyd, R.L., Hollander, G.A. & Wodnar-Filipowicz, A. Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation. J. Exp. Med. 205, 523–531 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Mitola, S. et al. Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 116, 3677–3680 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Fisher, L.W., Stubbs, J.T. III & Young, M.F. Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop. Scand. Suppl. 266, 61–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Fletcher, A. et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front. Immunol. 2, 35 (2011).

    Article  PubMed  Google Scholar 

  49. Painter, M.W., Davis, S., Hardy, R.R., Mathis, D. & Benoist, C. Transcriptomes of the B and T lineages compared by multiplatform microarray profiling. J. Immunol. 186, 3047–3057 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Gonzalez, S.F Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 11 427–434 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Fisher (US National Institutes of Health) for polyclonal anti-decorin, anti-fibromodulin and anti-biglycan; M. Koch (University of Cologne) for polyclonal anti–collagen XIV; M. Curry for technical assistance in sorting stromal-cell populations; J.B. Lewis for discussions during analysis of microarray data; eBioscience, Affymetrix and Expression Analysis for support of the ImmGen Project; and K.W. Wucherpfennig for critical reading of the manuscript. Supported by the US National Institutes of Health (R01 DK074500 and P01 AI045757 to S.J.T.; R24 AI072073 to the ImmGen Consortium; R01 AI063428-06 to M.B.B.; R01 DE019917 to D.J.M.; and GM38903 to M.E.H. and K.K.), the Dana-Farber Cancer Institute (K.K. and V.L.-K.) and the Seventh Framework Programme of the European Union (Marie Curie International Outgoing Fellowship 220044 to S.F.G.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

D.M. and A.L.F. designed the study, did and analyzed most experiments, and wrote the manuscript; S.J.T. designed and directed the study, analyzed and interpreted results, and wrote the manuscript; D.M. did primary analysis of the microarray data; V.L.-K., P.T., S.F.G., J.A., K.G.E. and K.K. did and analyzed individual experiments; and S.K.C., M.B.B., D.J.M., M.C.C. and M.E.H. contributed reagents and assisted with the analysis of individual experiments.

Corresponding author

Correspondence to Shannon J Turley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 14334 kb)

Supplementary Note 1

Supplementary Note 1 (PDF 3371 kb)

Table 1

Table 1 (XLSX 229 kb)

Table 2

Table 2 (XLSX 216 kb)

Table 3

Table 3 (XLSX 284 kb)

Table 4

Table 4 (XLSX 49 kb)

Table 5

Table 5 (XLSX 37 kb)

Note 2

Note 2 (XLSX 251 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malhotra, D., Fletcher, A., Astarita, J. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol 13, 499–510 (2012). https://doi.org/10.1038/ni.2262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing