Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1

Abstract

Toll-like receptor (TLR) signaling activates the inhibitor of transcription factor NF-κB (IκB) kinase (IKK) complex, which governs NF-κB-mediated transcription during inflammation. The RNase regnase-1 serves a critical role in preventing autoimmunity by controlling the stability of mRNAs that encode cytokines. Here we show that the IKK complex controlled the stability of mRNA for interleukin 6 (IL-6) by phosphorylating regnase-1 in response to stimulation via the IL-1 receptor (IL-1R) or TLR. Phosphorylated regnase-1 underwent ubiquitination and degradation. Regnase-1 was reexpressed in IL-1R- or TLR-activated cells after a period of lower expression. Regnase-1 mRNA was negatively regulated by regnase-1 itself via a stem-loop region present in the regnase-1 3′ untranslated region. Our data demonstrate that the IKK complex phosphorylates not only IκBα, thereby activating transcription, but also regnase-1, thereby releasing a 'brake' on IL-6 mRNA expression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphorylation and degradation of regnase-1 in response to stimulation of TLRs or IL-1R.
Figure 2: The IKK complex is essential for regnase-1 phosphorylation.
Figure 3: Effect of the phosphorylation of regnase-1 by IKKs on IL-6 mRNA expression.
Figure 4: Differences in the control of IL-6 mRNA stability by IL-1β and TNF.
Figure 5: Interaction of regnase-1 with IRAK1.
Figure 6: The expression of regnase-1 mRNA is controlled by regnase-1 itself.
Figure 7: Computational modeling of the control of IL-6 mRNA expression by regnase-1.

Similar content being viewed by others

References

  1. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Beutler, B. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol. Rev. 227, 248–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kawagoe, T. et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol. 9, 684–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Skaug, B., Jiang, X. & Chen, Z.J. The role of ubiquitin in NF-κB regulatory pathways. Annu. Rev. Biochem. 78, 769–796 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Xia, Z.P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat. Rev. Cancer 8, 438–449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baltimore, D. NF-kappaB is 25. Nat. Immunol. 12, 683–685 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Oeckinghaus, A., Hayden, M.S. & Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12, 695–708 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Ea, C.K., Deng, L., Xia, Z.P., Pineda, G. & Chen, Z.J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Karin, M. & Gallagher, E. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol. Rev. 228, 225–240 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, P. Post-transcriptional control of cytokine production. Nat. Immunol. 9, 353–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nat. Immunol. 10, 281–288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat. Rev. Immunol. 10, 24–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Spencer, E., Jiang, J. & Chen, Z.J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284–294 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hartupee, J., Li, X. & Hamilton, T. Interleukin 1α-induced NFκB activation and chemokine mRNA stabilization diverge at IRAK1. J. Biol. Chem. 283, 15689–15693 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wan, Y. et al. Interleukin-1 receptor-associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control. J. Biol. Chem. 284, 10367–10375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kasza, A. et al. Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol. Biol. 11, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Paschoud, S. et al. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol. Cell. Biol. 26, 8228–8241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, C.J. & Ashwell, J.D. NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-κB activation. Proc. Natl. Acad. Sci. USA 105, 3023–3028 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suzuki, K. & Verma, I.M. Phosphorylation of SNAP-23 by IκB kinase 2 regulates mast cell degranulation. Cell 134, 485–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia, Y. et al. Phosphorylation of p53 by IκB kinase 2 promotes its degradation by β-TrCP. Proc. Natl. Acad. Sci. USA 106, 2629–2634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoshino, K. et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440, 949–953 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Liang, J. et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling. J. Exp. Med. 207, 2959–2973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoops, S. et al. COPASI—a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Q., Estepa, G., Memet, S., Israel, A. & Verma, I.M. Complete lack of NF-κB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev. 14, 1729–1733 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmidt-Supprian, M. et al. Mature T cells depend on signaling through the IKK complex. Immunity 19, 377–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto, M. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat. Immunol. 7, 962–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Uematsu, S. et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201, 915–923 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank laboratory colleagues; E. Kamada and M. Kageyama for secretarial assistance; Y. Fujiwara, M. Kumagai and N. Umano for technical assistance; M. Takahama and T. Misawa for help with experiments; A. Matsuo, T. Hata, M. Tanaka and T. Kurimoto for discussions; K. Iwai (Osaka University) for expression plasmids for Flag-tagged β-TrCP and β-TrCPΔF; and D.V. Goeddel (Tularik; present affiliation, NGM Biopharmaceuticals) for the expression plasmid for IKKβ; I. Verma and M. Schmitt (Salk Institute), M. Schmidt-Supprian (Max Planck Institute) for MEFs deficient in IKKβ or both IKKα and IKKβ; S. Yamaoka (Tokyo Medical and Dental University) for Rat-1 and 5R cells; and F. Inagaki (Hokkaido University) for recombinant regnase-1 (amino acids 1–330). Supported by the Special Coordination Funds of the Japanese Ministry of Education, Culture, Sports, Science and Technology, and the Ministry of Health, Labour and Welfare in Japan, the Japan Society for the Promotion of Science through Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).

Author information

Authors and Affiliations

Authors

Contributions

H.I. and O.T. designed and did most of the experiments and analyzed the data; K.M., T.U., K.K., T. Satoh and T. Saitoh helped with experiments; S.T. and D.M.S. did mathematical modeling; M.M. provided advice for experiments; H.I., S.T. and O.T. wrote the manuscript; and S.A. supervised the project.

Corresponding authors

Correspondence to Osamu Takeuchi or Shizuo Akira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Tables 1–2 (PDF 1880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwasaki, H., Takeuchi, O., Teraguchi, S. et al. The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1. Nat Immunol 12, 1167–1175 (2011). https://doi.org/10.1038/ni.2137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing