Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity

Abstract

Patients with asthma, a major public health problem, are at high risk for serious disease from influenza virus infection, but the pathogenic mechanisms by which influenza A causes airway disease and asthma are not fully known. We show here in a mouse model that influenza infection acutely induced airway hyper-reactivity (AHR), a cardinal feature of asthma, independently of T helper type 2 (TH2) cells and adaptive immunity. Instead, influenza infection induced AHR through a previously unknown pathway that required the interleukin 13 (IL-13)–IL-33 axis and cells of the non-T cell, non-B cell innate lymphoid type called 'natural helper cells'. Infection with influenza A virus, which activates the NLRP3 inflammasome, resulted in much more production of IL-33 by alveolar macrophages, which in turn activated natural helper cells producing substantial IL-13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H3N1 infection causes AHR and inflammation.
Figure 2: ST2-deficient mice fail to develop H3N1-induced AHR.
Figure 3: H3N1-induced AHR requires TLR7 and MyD88.
Figure 4: H3N1-induced production of IL-33 in alveolar macrophages.
Figure 5: H3N1 infection results in a greater abundance of natural helper cells in the lungs.
Figure 6: IL-13 and natural helper cells cause AHR.
Figure 7: Natural helper cells are essential for H3N1-induced AHR in Rag2−/− mice.

Similar content being viewed by others

References

  1. Robinson, D.S. et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 326, 298–304 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Johnston, R.A. et al. Allergic airway responses in obese mice. Am. J. Respir. Crit. Care Med. 176, 650–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Pichavant, M. et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J. Exp. Med. 205, 385–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, E.Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Wright, R.J. Stress and atopic disorders. J. Allergy Clin. Immunol. 116, 1301–1306 (2005).

    Article  PubMed  Google Scholar 

  6. Oboki, K., Ohno, T., Saito, H. & Nakae, S. TH17 and allergy. Allergol. Int. 57, 121–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, G.P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372, 1107–1119 (2008).

    Article  PubMed  Google Scholar 

  8. Kim, H.Y., DeKruyff, R.H. & Umetsu, D.T. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat. Immunol. 11, 577–584 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Jain, S. et al. Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. N. Engl. J. Med. 361, 1935–1944 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Hansen, G., Berry, G., DeKruyff, R.H. & Umetsu, D.T. Allergen-specific TH1 cells fail to counterbalance TH2 cell-induced airway hyperreactivity but cause severe airway inflammation. J. Clin. Invest. 103, 175–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Akbari, O. et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9, 582–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kanneganti, T.D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281, 36560–36568 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Thomas, P.G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566–575 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Allen, I.C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Ichinohe, T., Pang, I.K. & Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 11, 404–410 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Saenz, S.A. et al. IL-25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1371–1376 (2010).

    Article  Google Scholar 

  19. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Wood, I.S., Wang, B. & Trayhurn, P. IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes. Biochem. Biophys. Res. Commun. 384, 105–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Moussion, C., Ortega, N. & Girard, J.P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS ONE 3, e3331 (2008).

    Article  PubMed  Google Scholar 

  24. Prefontaine, D. et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J. Allergy Clin. Immunol. 125, 752–754 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Moffatt, M.F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Gudbjartsson, D.F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Kondo, Y. et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 20, 791–800 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Kurowska-Stolarska, M. et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. 183, 6469–6477 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Hoshino, K. et al. The absence of interleukin 1 receptor-related T1/ST2 does not affect T helper cell type 2 development and its effector function. J. Exp. Med. 190, 1541–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Mangan, N.E., Dasvarma, A., McKenzie, A.N. & Fallon, P.G. T1/ST2 expression on TH2 cells negatively regulates allergic pulmonary inflammation. Eur. J. Immunol. 37, 1302–1312 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Walzl, G. et al. Inhibition of T1/ST2 during respiratory syncytial virus infection prevents T helper cell type 2 (TH2)- but not TH1-driven immunopathology. J. Exp. Med. 193, 785–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Xu, D. et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not TH2 cells. J. Exp. Med. 188, 1485–1492 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Kearley, J., Barker, J.E., Robinson, D.S. & Lloyd, C.M. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J. Exp. Med. 202, 1539–1547 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Silver, M.R. et al. IL-33 synergizes with IgE-dependent and IgE-independent agents to promote mast cell and basophil activation. Inflamm. Res. 59, 207–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Cherry, W.B., Yoon, J., Bartemes, K.R., Iijima, K. & Kita, H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol. 121, 1484–1490 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Bortoluci, K.R. & Medzhitov, R. Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell. Mol. Life Sci. 67, 1643–1651 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Luthi, A.U. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Cayrol, C. & Girard, J.P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl. Acad. Sci. USA 106, 9021–9026 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, W. & Hu, Z. The enigmatic processing and secretion of interleukin-33. Cell. Mol. Immunol. 7, 260–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Baumgarth, N., Brown, L., Jackson, D. & Kelso, A. Novel features of the respiratory tract T-cell response to influenza virus infection: lung T cells increase expression of γ interferon mRNA in vivo and maintain high levels of mRNA expression for interleukin-5 (IL-5) and IL-10. J. Virol. 68, 7575–7581 (1994).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Grusby (Harvard School of Public Health) for CD1d-deficient mice (backcrossed to the BALB/c strain) and Z. Luo for technical support. Supported by the US National Institutes of Health (R01 AI068085, R01 HL62348 and R01 051354).

Author information

Authors and Affiliations

Authors

Contributions

Y.-J.C. designed the study, did experiments, analyzed the data and wrote the manuscript; H.Y.K. did experiments and analyzed the data; L.A.A. did experiments; N.B. provided the H3N1 virus and did experiments. A.N.J.M., D.E.S. and R.H.D. provided reagents and ST2-deficient (Il1rl1−/−) and IL-13 deficient (Il13−/−) mice; and D.T.U. designed the study and wrote the manuscript.

Corresponding author

Correspondence to Dale T Umetsu.

Ethics declarations

Competing interests

D.E.S. is an employee and shareholder of Amgen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 4012 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YJ., Kim, H., Albacker, L. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 12, 631–638 (2011). https://doi.org/10.1038/ni.2045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing