Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The E3 ligase Itch is a negative regulator of the homeostasis and function of hematopoietic stem cells

Abstract

Although hematopoietic stem cells (HSCs) are the most thoroughly characterized type of adult stem cell, the intricate molecular machinery that regulates their self-renewal properties remains elusive. Here we showed that the E3 ubiquitin ligase Itch negatively regulated the development and function of HSCs. Itch−/− mice had HSCs with enhanced frequency, competence and long-term repopulating activity. Itch-deficient HSCs showed accelerated proliferation rates and sustained progenitor properties, as well as more signaling by the transcription factor Notch1, due to more accumulation of activated Notch1. Knockdown of Notch1 in Itch-mutant HSCs resulted in reversion of the phenotype. Thus, we identify Itch as a previously unknown negative regulator of HSC homeostasis and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Itch deficiency results in a greater frequency of HSCs in the bone marrow.
Figure 2: Cell-intrinsic defects and greater competence of Itch-mutant HSCs.
Figure 3: Accelerated proliferation of Itch-mutant HSCs.
Figure 4: Augmented repopulation activity of Itch−/− HSCs after myeloablation.
Figure 5: Less spontaneous differentiation by Itch-deficient HSCs in vitro.
Figure 6: Itch deficiency results in more Notch1 protein and signaling in HPCs.
Figure 7: Knockdown of Notch1 in Itch-deficient HSCs results in reversion of their phenotype.

Similar content being viewed by others

References

  1. Morrison, S.J., Uchida, N. & Weissman, I.L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35–71 (1995).

    Article  CAS  Google Scholar 

  2. Orford, K.W. & Scadden, D.T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 9, 115–128 (2008).

    Article  CAS  Google Scholar 

  3. Orkin, S.H. & Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  Google Scholar 

  4. He, S., Nakada, D. & Morrison, S.J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 25, 377–406 (2009).

    Article  CAS  Google Scholar 

  5. Blank, U., Karlsson, G. & Karlsson, S. Signaling pathways governing stem-cell fate. Blood 111, 492–503 (2008).

    Article  CAS  Google Scholar 

  6. Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 19, 461–468 (2009).

    Article  CAS  Google Scholar 

  7. Rathinam, C., Thien, C.B., Langdon, W.Y., Gu, H. & Flavell, R.A. The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells. Genes Dev. 22, 992–997 (2008).

    Article  CAS  Google Scholar 

  8. Yokomizo, T. & Dzierzak, E. Fine-tuning of hematopoietic stem cell homeostasis: novel role for ubiquitin ligase. Genes Dev. 22, 960–963 (2008).

    Article  CAS  Google Scholar 

  9. Conaway, R.C., Brower, C.S. & Conaway, J.W. Emerging roles of ubiquitin in transcription regulation. Science 296, 1254–1258 (2002).

    Article  CAS  Google Scholar 

  10. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  11. Haglund, K., Di Fiore, P.P. & Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603 (2003).

    Article  CAS  Google Scholar 

  12. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol. 19, 141–172 (2003).

    Article  CAS  Google Scholar 

  13. Kodadek, T., Sikder, D. & Nalley, K. Keeping transcriptional activators under control. Cell 127, 261–264 (2006).

    Article  CAS  Google Scholar 

  14. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  15. Bernassola, F., Karin, M., Ciechanover, A. & Melino, G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14, 10–21 (2008).

    Article  CAS  Google Scholar 

  16. Perry, W.L. et al. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat. Genet. 18, 143–146 (1998).

    Article  CAS  Google Scholar 

  17. Matesic, L.E., Haines, D.C., Copeland, N.G. & Jenkins, N.A. Itch genetically interacts with Notch1 in a mouse autoimmune disease model. Hum. Mol. Genet. 15, 3485–3497 (2006).

    Article  CAS  Google Scholar 

  18. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat. Immunol. 3, 281–287 (2002).

    Article  CAS  Google Scholar 

  19. Venuprasad, K. et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat. Immunol. 9, 245–253 (2008).

    Article  CAS  Google Scholar 

  20. Parravicini, V., Field, A.C., Tomlinson, P.D., Basson, M.A. & Zamoyska, R. Itch−/− alphabeta and gammadelta T cells independently contribute to autoimmunity in Itchy mice. Blood 111, 4273–4282 (2008).

    Article  CAS  Google Scholar 

  21. Kiel, M.J., Yilmaz, O.H., Iwashita, T., Terhorst, C. & Morrison, S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  22. Yilmaz, O.H., Kiel, M.J. & Morrison, S.J. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107, 924–930 (2006).

    Article  CAS  Google Scholar 

  23. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  Google Scholar 

  24. Dzierzak, E. & Speck, N.A. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat. Immunol. 9, 129–136 (2008).

    Article  CAS  Google Scholar 

  25. Huang, X., Cho, S. & Spangrude, G.J. Hematopoietic stem cells: generation and self-renewal. Cell Death Differ. 14, 1851–1859 (2007).

    Article  CAS  Google Scholar 

  26. Johnson, G.R. & Moore, M.A. Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature 258, 726–728 (1975).

    Article  CAS  Google Scholar 

  27. Spangrude, G.J., Brooks, D.M. & Tumas, D.B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85, 1006–1016 (1995).

    CAS  PubMed  Google Scholar 

  28. Gothot, A., van der Loo, J.C., Clapp, D.W. & Srour, E.F. Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34+ cells in non-obese diabetic/severe combined immune-deficient mice. Blood 92, 2641–2649 (1998).

    CAS  PubMed  Google Scholar 

  29. Lerner, C. & Harrison, D.E. 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp. Hematol. 18, 114–118 (1990).

    CAS  PubMed  Google Scholar 

  30. Rathinam, C. et al. Generation and characterization of a novel hematopoietic progenitor cell line with DC differentiation potential. Leukemia 20, 870–876 (2006).

    Article  CAS  Google Scholar 

  31. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6, 1278–1281 (2000).

    Article  CAS  Google Scholar 

  32. Chastagner, P., Israel, A. & Brou, C. AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS ONE 3, e2735 (2008).

    Article  Google Scholar 

  33. Qiu, L. et al. Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J. Biol. Chem. 275, 35734–35737 (2000).

    Article  CAS  Google Scholar 

  34. Duncan, A.W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6, 314–322 (2005).

    Article  CAS  Google Scholar 

  35. Allman, D., Aster, J.C. & Pear, W.S. Notch signaling in hematopoiesis and early lymphocyte development. Immunol. Rev. 187, 75–86 (2002).

    Article  CAS  Google Scholar 

  36. Moore, K.A. & Lemischka, I.R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    Article  CAS  Google Scholar 

  37. Rathinam, C. & Flavell, R.A. The hematopoiesis paradigm: clarity or ambiguity? Blood 112, 3534–3535 (2008).

    Article  CAS  Google Scholar 

  38. Garrison, B.S. & Rossi, D.J. Controlling stem cell fate one substrate at a time. Nat. Immunol. 11, 193–194 (2010).

    Article  CAS  Google Scholar 

  39. Trumpp, A., Essers, M. & Wilson, A. Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 10, 201–209 (2010).

    Article  CAS  Google Scholar 

  40. Min, I.M. et al. The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2, 380–391 (2008).

    Article  CAS  Google Scholar 

  41. Kopan, R. & Ilagan, M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  Google Scholar 

  42. Maillard, I. et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2, 356–366 (2008).

    Article  CAS  Google Scholar 

  43. Radtke, F., Fasnacht, N. & Macdonald, H.R. Notch signaling in the immune system. Immunity 32, 14–27 (2010).

    Article  CAS  Google Scholar 

  44. Maillard, I., Adler, S.H. & Pear, W.S. Notch and the immune system. Immunity 19, 781–791 (2003).

    Article  CAS  Google Scholar 

  45. Maeda, T. et al. Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 316, 860–866 (2007).

    Article  CAS  Google Scholar 

  46. Radtke, F., Wilson, A. & MacDonald, H.R. Notch signaling in T- and B-cell development. Curr. Opin. Immunol. 16, 174–179 (2004).

    Article  CAS  Google Scholar 

  47. Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  Google Scholar 

  48. Lohr, N.J. et al. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am. J. Hum. Genet. 86, 447–453 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Manzo for help with manuscript submission; and the Yale Cell Sorter Facility for support. Supported by the Howard Hughes Medical Institute (R.A.F.) and the administrative core of the National Institutes of Health Center for Biomedical Research Excellence at Roger Williams Medical Center (P20RR018757).

Author information

Authors and Affiliations

Authors

Contributions

C.R. conceived of, designed and did the study, analyzed and interpreted all data, and wrote the manuscript; L.E.M. provided the Itch−/− mice and corrected the manuscript; and R.A.F. provided advice and corrected the manuscript.

Corresponding author

Correspondence to Richard A Flavell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 1265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathinam, C., Matesic, L. & Flavell, R. The E3 ligase Itch is a negative regulator of the homeostasis and function of hematopoietic stem cells. Nat Immunol 12, 399–407 (2011). https://doi.org/10.1038/ni.2021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing