Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-linked glycosylation selectively regulates autonomous precursor BCR function

Abstract

Developing B cells express distinct classes of B cell antigen receptors (BCRs) that differ in their heavy chain (HC). Although only μHC is expressed in early stages, δHC-containing BCRs dominate on the surface of mature B cells. The reason for the tightly regulated expression of these receptors is poorly understood. Here we show that μHC was specifically required for precursor BCR (pre-BCR) function and that δHC was unable to form a functional pre-BCR. A conserved asparagine (N)-linked glycosylation site at position 46 (N46) in the first conserved domain of μHC was absolutely required for pre-BCR function, and swapping that domain with δHC resulted in a functional δHC-containing pre-BCR. When tested in the context of the BCR, μHC with a mutant N46 showed normal function, which indicated that N46-glycosylation is specifically required for pre-BCR function. Our results suggest an unexpected mode of pre-BCR function, in which binding of the surrogate light chain to N46 mediates autonomous crosslinking and, concomitantly, receptor formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cells deficient in μHC and expressing δHC show an early developmental block.
Figure 2: The δHC is not able to form a pre-BCR.
Figure 3: N46-glycosylation in μHC is essential for normal pre-BCR formation.
Figure 4: Glycans at positions N211, N243 and N281 in μHC are not required for the formation of a functional pre-BCR.
Figure 5: N46Q μHC associates with a λ5 mutant lacking the arginine-rich amino terminus.
Figure 6: BCR formation is independent of N46-glycosylation in the μHC.
Figure 7: Transferring the Cμ1 domain to δHC facilitates the formation of a functional pre-BCR.

Similar content being viewed by others

References

  1. Burrows, P.D. et al. The transient expression of pre-B cell receptors governs B cell development. Semin. Immunol. 14, 343–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K.A. B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Kitamura, D. et al. A critical role of λ5 protein in B cell development. Cell 69, 823–831 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Meixlsperger, S. et al. Conventional light chains inhibit the autonomous signaling capacity of the B cell receptor. Immunity 26, 323–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Geier, J.K. & Schlissel, M.S. Pre-BCR signals and the control of Ig gene rearrangements. Semin. Immunol. 18, 31–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Gauthier, L., Rossi, B., Roux, F., Termine, E. & Schiff, C. Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc. Natl. Acad. Sci. USA 99, 13014–13019 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bradl, H., Wittmann, J., Milius, D., Vettermann, C. & Jack, H.M. Interaction of murine precursor B cell receptor with stroma cells is controlled by the unique tail of λ5 and stroma cell-associated heparan sulfate. J. Immunol. 171, 2338–2348 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Bankovich, A.J. et al. Structural insight into pre-B cell receptor function. Science 316, 291–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Rolink, A.G., Winkler, T., Melchers, F. & Andersson, J. Precursor B cell receptor-dependent B cell proliferation and differentiation does not require the bone marrow or fetal liver environment. J. Exp. Med. 191, 23–32 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Kohler, F. et al. Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 29, 912–921 (2008).

    Article  PubMed  Google Scholar 

  12. Moody, A.M. et al. Sialic acid capping of CD8β core 1-O-glycans controls thymocyte-major histocompatibility complex class I interaction. J. Biol. Chem. 278, 7240–7246 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Tedder, T.F., Tuscano, J., Sato, S. & Kehrl, J.H. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu. Rev. Immunol. 15, 481–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Ghosh, S., Bandulet, C. & Nitschke, L. Regulation of B cell development and B cell signalling by CD22 and its ligands α2,6-linked sialic acids. Int. Immunol. 18, 603–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory actions of intravenous immunoglobulin. Annu. Rev. Immunol. 26, 513–533 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Kaneko, Y., Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, F., Nakouzi, A., Angeletti, R.H. & Casadevall, A. Site-specific characterization of the N-linked oligosaccharides of a murine immunoglobulin M by high-performance liquid chromatography/electrospray mass spectrometry. Anal. Biochem. 314, 266–280 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wright, J.F., Shulman, M.J., Isenman, D.E. & Painter, R.H. C1 binding by mouse IgM. The effect of abnormal glycosylation at position 402 resulting from a serine to asparagine exchange at residue 406 of the μ-chain. J. Biol. Chem. 265, 10506–10513 (1990).

    CAS  PubMed  Google Scholar 

  19. Muraoka, S. & Shulman, M.J. Structural requirements for IgM assembly and cytolytic activity. Effects of mutations in the oligosaccharide acceptor site at Asn402. J. Immunol. 142, 695–701 (1989).

    CAS  PubMed  Google Scholar 

  20. Lutz, C. et al. IgD can largely substitute for loss of IgM function in B cells. Nature 393, 797–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, K.M. et al. Anti-IgM but not anti-IgD antibodies inhibit cell division of normal human mature B cells. J. Immunol. 148, 29–34 (1992).

    CAS  PubMed  Google Scholar 

  22. Kim, K.M. & Reth, M. The B cell antigen receptor of class IgD induces a stronger and more prolonged protein tyrosine phosphorylation than that of class IgM. J. Exp. Med. 181, 1005–1014 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Tisch, R., Roifman, C.M. & Hozumi, N. Functional differences between immunoglobulins M and D expressed on the surface of an immature B-cell line. Proc. Natl. Acad. Sci. USA 85, 6914–6918 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat. Immunol. 4, 38–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Su, Y.W. et al. Identification of a pre-BCR lacking surrogate light chain. J. Exp. Med. 198, 1699–1706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galler, G.R. et al. Surface μ heavy chain signals down-regulation of the V(D)J-recombinase machinery in the absence of surrogate light chain components. J. Exp. Med. 199, 1523–1532 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schuh, W., Meister, S., Roth, E. & Jack, H.M. Cutting edge: signaling and cell surface expression of a μ H chain in the absence of λ5: a paradigm revisited. J. Immunol. 171, 3343–3347 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Su, Y.W. & Jumaa, H. LAT links the pre-BCR to calcium signaling. Immunity 19, 295–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Minegishi, Y., Hendershot, L.M. & Conley, M.E. Novel mechanisms control the folding and assembly of λ5/14.1 and VpreB to produce an intact surrogate light chain. Proc. Natl. Acad. Sci. USA 96, 3041–3046 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohnishi, K. & Melchers, F. The nonimmunoglobulin portion of lambda5 mediates cell-autonomous pre-B cell receptor signaling. Nat. Immunol. 4, 849–856 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Guloglu, F.B. & Roman, C.A. Precursor B cell receptor signaling activity can be uncoupled from surface expression. J. Immunol. 176, 6862–6872 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. ten Boekel, E., Melchers, F. & Rolink, A.G. Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 8, 199–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Pelanda, R. et al. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity 7, 765–775 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Waisman, A. et al. IgG1 B cell receptor signaling is inhibited by CD22 and promotes the development of B cells whose survival is less dependent on Ig α/β. J. Exp. Med. 204, 747–758 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ketteler, R., Glaser, S., Sandra, O., Martens, U.M. & Klingmuller, U. Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther. 9, 477–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Storch, B., Meixlsperger, S. & Jumaa, H. The Ig-α ITAM is required for efficient differentiation but not proliferation of pre-B cells. Eur. J. Immunol. 37, 252–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Minguet, S., Swamy, M., Alarcon, B., Luescher, I.F. & Schamel, W.W. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R.Y. Tsien (University of California) for tdTomato; A.G. Rolink (University of Basel) for phycoerythrin-biotin–anti-λ5; J.C. Cambier (National Jewish Medical and Research Center and University of Colorado Health Sciences Center) for anti-immunoglobulin-α; P.J. Nielsen and F. Köhler for reading the manuscript and discussions; A. Wuerch and S. Hobitz for help with cell sorting; and U. Stauffer, N. Joswig and C. Johner for mouse work. Supported by Deutsche Forschungsgemeinschaft (SFB746 and SFB 620) and the Excellence Initiative of the German Federal and State Governments (GSC-4, Spemann Graduate School).

Author information

Authors and Affiliations

Authors

Contributions

R.Ü. and M.P.B. did experiments, analyzed data and contributed to the writing of the manuscript; C.E. did experiments and provided advice; T.W. analyzed the μHC-deficient mice; M.R. provided suggestions for experimental design; and H.J. supervised the work, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Hassan Jumaa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 2197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Übelhart, R., Bach, M., Eschbach, C. et al. N-linked glycosylation selectively regulates autonomous precursor BCR function. Nat Immunol 11, 759–765 (2010). https://doi.org/10.1038/ni.1903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing