Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells

Abstract

Memory B and plasma cells (PCs) are generated in the germinal center (GC). Because follicular helper T cells (TFH cells) have high expression of the immunoinhibitory receptor PD-1, we investigated the role of PD-1 signaling in the humoral response. We found that the PD-1 ligands PD-L1 and PD-L2 were upregulated on GC B cells. Mice deficient in PD-L2 (Pdcd1lg2−/−), PD-L1 and PD-L2 (Cd274−/−Pdcd1lg2−/−) or PD-1 (Pdcd1−/−) had fewer long-lived PCs. The mechanism involved more GC cell death and less TFH cell cytokine production in the absence of PD-1; the effect was selective, as remaining PCs had greater affinity for antigen. PD-1 expression on T cells and PD-L2 expression on B cells controlled TFH cell and PC numbers. Thus, PD-1 regulates selection and survival in the GC, affecting the quantity and quality of long-lived PCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differences in the expression of PD-1 and its ligands by B cell subsets.
Figure 2: Long-lived PCs are lower in abundance in the absence of PD-1 signaling.
Figure 3: The decrease in PC numbers occurs during the late GC response and affects both IgG1 and IgM.
Figure 4: Greater cell death but normal proliferation in GCs of Pdcd1−/− mice.
Figure 5: More cells of a TFH phenotype correlates with lower cytokine production in the absence of PD-1 signaling.
Figure 6: The lower abundance of AFCs is due to impaired interactions between PD-ligands on B cells and PD-1 on T cells.
Figure 7: AFC production, memory B cell formation and TFH cells are altered in mixed–bone marrow chimeras.

Similar content being viewed by others

References

  1. Joshi, N.S. & Kaech, S.M. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180, 1309–1315 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Han, S. et al. Cellular interaction in germinal centers. Roles of CD40 ligand and B7–2 in established germinal centers. J. Immunol. 155, 556–567 (1995).

    CAS  PubMed  Google Scholar 

  3. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Jacob, J., Przylepa, J., Miller, C. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J. Exp. Med. 178, 1293–1307 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi, Y. et al. Relaxed negative selection in germinal centers and impaired affinity maturation in bcl-xL transgenic mice. J. Exp. Med. 190, 399–410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi, Y., Dutta, P.R., Cerasoli, D.M. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection. J. Exp. Med. 187, 885–895 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Linterman, M.A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allen, R.C. et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259, 990–993 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl. Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tomayko, M.M. et al. Systematic comparison of gene expression between murine memory and naive B cells demonstrates that memory B cells have unique signaling capabilities. J. Immunol. 181, 27–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Good, K.L., Avery, D.T. & Tangye, S.G. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J. Immunol. 182, 890–901 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Blackburn, S.D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Butte, M.J., Keir, M.E., Phamduy, T.B., Sharpe, A.H. & Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity 27, 111–122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamazaki, T. et al. Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 169, 5538–5545 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Zhong, X., Tumang, J.R., Gao, W., Bai, C. & Rothstein, T.L. PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for VH11/VH12 and phosphatidylcholine binding. Eur. J. Immunol. 37, 2405–2410 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Allen, C.D., Okada, T., Tang, H.L. & Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Toellner, K.M., Gulbranson-Judge, A., Taylor, D.R., Sze, D.M. & MacLennan, I.C. Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation. J. Exp. Med. 183, 2303–2312 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Y.J., Zhang, J., Lane, P.J., Chan, E.Y. & MacLennan, I.C. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21, 2951–2962 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Sharpe, A.H., Wherry, E.J., Ahmed, R. & Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Ha, S.J. et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med. 205, 543–555 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson, S.M. et al. Taking advantage: high-affinity B cells in the germinal center have lower death rates, but similar rates of division, compared to low-affinity cells. J. Immunol. 183, 7314–7325 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Inamine, A. et al. Two waves of memory B-cell generation in the primary immune response. Int. Immunol. 17, 581–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi, Y., Ohta, H. & Takemori, T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14, 181–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Hershberg, U., Uduman, M., Shlomchik, M.J. & Kleinstein, S.H. Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int. Immunol. 20, 683–694 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Fazilleau, N., Mark, L., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Follicular helper T cells: lineage and location. Immunity 30, 324–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sonoda, E. et al. B cell development under the condition of allelic inclusion. Immunity 6, 225–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Shlomchik, M.J., Zharhary, D., Saunders, T., Camper, S.A. & Weigert, M.G. A rheumatoid factor transgenic mouse model of autoantibody regulation. Int. Immunol. 5, 1329–1341 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Blink, E.J. et al. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–554 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Kinter, A.L. et al. The common γ-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J. Immunol. 181, 6738–6746 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. King, I.L. & Mohrs, M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206, 1001–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zotos, D. et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207, 365–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Linterman, M.A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207, 353–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Avery, D.T. et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med. 207, 155–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hasbold, J., Corcoran, L.M., Tarlinton, D.M., Tangye, S.G. & Hodgkin, P.D. Evidence from the generation of immunoglobulin G-secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nat. Immunol. 5, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Hodgkin, P.D., Rush, J., Gett, A.V., Bartell, G. & Hasbold, J. The logic of intercellular communication in the immune system. Immunol. Cell Biol. 76, 448–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Francisco, L.M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shin, T. et al. Cooperative B7–1/2 (CD80/CD86) and B7-DC costimulation of CD4+ T cells independent of the PD-1 receptor. J. Exp. Med. 198, 31–38 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Keir, M.E. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203, 883–895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishimura, H., Minato, N., Nakano, T. & Honjo, T. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563–1572 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Keir, M.E., Freeman, G.J. & Sharpe, A.H. PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues. J. Immunol. 179, 5064–5070 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Hannum, L.G., Ni, D., Haberman, A.M., Weigert, M.G. & Shlomchik, M.J. A disease-related rheumatoid factor autoantibody is not tolerized in a normal mouse: implications for the origins of autoantibodies in autoimmune disease. J. Exp. Med. 184, 1269–1278 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Prak, E.L. & Weigert, M. Light chain replacement: a new model for antibody gene rearrangement. J. Exp. Med. 182, 541–548 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, J. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 5, 647–656 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Hannum, L.G., Haberman, A.M., Anderson, S.M. & Shlomchik, M.J. Germinal center initiation, variable gene region hypermutation, and mutant B cell selection without detectable immune complexes on follicular dendritic cells. J. Exp. Med. 192, 931–942 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anderson, S.M., Tomayko, M.M., Ahuja, A., Haberman, A.M. & Shlomchik, M.J. New markers for murine memory B cells that define mutated and unmutated subsets. J. Exp. Med. 204, 2103–2114 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Rajewsky (Harvard University) for B1-8 knock-in mice; T. Honjo (Kyoto University) for Pdcd1−/− mice; E. Song and G. Zuccarino-Catania for technical assistance; U. Hershberg for assistance in analyzing memory B cell sequencing data; the Yale Cell Sorter Facility for cell sorting; the Yale Animal Resource Center for animal care; the Craft and Haberman laboratories for oligonucleotides; and S. Kerfoot for critical reading of the manuscript. Supported by the National Institutes of Health (AI43603 to M.J.S., AI40614 to A.H.S. and K08AI78533 to M.M.T), the National Health and Medical Research Council (K.L.G.-J.) and Arthritis Australia (K.L.G.-J.).

Author information

Authors and Affiliations

Authors

Contributions

K.L.G.-J., M.M.T and M.J.S. designed research; K.L.G.-J. and C.G.S did research; L.C. and A.H.S. generated and contributed knockout mice; and K.L.G.-J. and M.J.S. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Mark J Shlomchik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 1617 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Good-Jacobson, K., Szumilas, C., Chen, L. et al. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol 11, 535–542 (2010). https://doi.org/10.1038/ni.1877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing