Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance

Abstract

Medullary thymic epithelial cells (mTECs) serve an essential function in central tolerance by expressing peripheral-tissue antigens. These antigens may be transferred to and presented by dendritic cells (DCs). Therefore, it is unclear whether mTECs, in addition to being an antigen reservoir, also serve a mandatory function as antigen-presenting cells. Here we diminished major histocompatibility complex (MHC) class II on mTECs through transgenic expression of a 'designer' microRNA specific for the MHC class II transactivator CIITA (called 'C2TA' here). This resulted in an enlarged polyclonal CD4+ single-positive compartment and, among thymocytes specific for model antigens expressed in mTECs, enhanced selection of regulatory T cells (Treg cells) at the expense of deletion. Our data document an autonomous contribution of mTECs to both dominant and recessive mechanisms of CD4+ T cell tolerance and support an avidity model of Treg cell development versus deletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lower MHC class II expression through Ciita silencing in vitro.
Figure 2: Transgenic expression of the C2TA-specific synthetic miRNA in mTECs.
Figure 3: Silencing of Ciita and MHC class II genes in C2TAkd mTECs.
Figure 4: Phenotype, APC-function and promiscuous PTA expression of C2TAkd mTECs.
Figure 5: Nonredundant contribution of mTECs and hematopoietic APCs to the deletional tolerance of CD4+ T cells.
Figure 6: Rescue from clonal deletion and enhanced generation of OVA-specific Treg cells in DO11.10 × Aire-OVA × C2TAkd thymi.
Figure 7: Rescue from clonal deletion and enhanced generation of HA-specific Treg cells in TCR-HA × Aire-HA × C2TAkd thymi.
Figure 8: The C2TAkd-mediated cell-fate conversion of DO11.10 × Aire-OVA thymocytes is independent of cross-presentation by DCs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Hogquist, K.A., Baldwin, T.A. & Jameson, S.C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005).

    Article  CAS  Google Scholar 

  2. Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 9, 833–844 (2009).

    Article  CAS  Google Scholar 

  3. Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549–559 (2009).

    Article  CAS  Google Scholar 

  4. van Meerwijk, J.P. et al. Quantitative impact of thymic clonal deletion on the T cell repertoire. J. Exp. Med. 185, 377–383 (1997).

    Article  CAS  Google Scholar 

  5. Akiyama, T. et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308, 248–251 (2005).

    Article  CAS  Google Scholar 

  6. Akiyama, T. et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29, 423–437 (2008).

    Article  CAS  Google Scholar 

  7. Hikosaka, Y. et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008).

    Article  CAS  Google Scholar 

  8. Kajiura, F. et al. NF-κB-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J. Immunol. 172, 2067–2075 (2004).

    Article  CAS  Google Scholar 

  9. Kinoshita, D. et al. Essential role of IκB kinase α in thymic organogenesis required for the establishment of self-tolerance. J. Immunol. 176, 3995–4002 (2006).

    Article  CAS  Google Scholar 

  10. Rossi, S.W. et al. RANK signals from CD4+3 inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 204, 1267–1272 (2007).

    Article  CAS  Google Scholar 

  11. Mathis, D. & Benoist, C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).

    Article  CAS  Google Scholar 

  12. Peterson, P., Org, T. & Rebane, A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat. Rev. Immunol. 8, 948–957 (2008).

    Article  CAS  Google Scholar 

  13. Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202, 33–45 (2005).

    Article  CAS  Google Scholar 

  14. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  15. Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    Article  CAS  Google Scholar 

  16. Millet, V., Naquet, P. & Guinamard, R.R. Intercellular MHC transfer between thymic epithelial and dendritic cells. Eur. J. Immunol. 38, 1257–1263 (2008).

    Article  CAS  Google Scholar 

  17. Koble, C. & Kyewski, B. The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J. Exp. Med. 206, 1505–1513 (2009).

    Article  CAS  Google Scholar 

  18. Gray, D., Abramson, J., Benoist, C. & Mathis, D. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J. Exp. Med. 204, 2521–2528 (2007).

    Article  CAS  Google Scholar 

  19. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat. Immunol. 8, 351–358 (2007).

    Article  CAS  Google Scholar 

  20. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  21. Liston, A. & Rudensky, A.Y. Thymic development and peripheral homeostasis of regulatory T cells. Curr. Opin. Immunol. 19, 176–185 (2007).

    Article  CAS  Google Scholar 

  22. Irla, M. et al. Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 29, 451–463 (2008).

    Article  CAS  Google Scholar 

  23. Reith, W., LeibundGut-Landmann, S. & Waldburger, J.M. Regulation of MHC class II gene expression by the class II transactivator. Nat. Rev. Immunol. 5, 793–806 (2005).

    Article  CAS  Google Scholar 

  24. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  CAS  Google Scholar 

  25. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  Google Scholar 

  26. Dickins, R.A. et al. Tissue-specific and reversible RNA interference in transgenic mice. Nat. Genet. 39, 914–921 (2007).

    Article  CAS  Google Scholar 

  27. Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    Article  CAS  Google Scholar 

  28. Paddison, P.J. et al. Cloning of short hairpin RNAs for gene knockdown in mammalian cells. Nat. Methods 1, 163–167 (2004).

    Article  CAS  Google Scholar 

  29. Gardner, J.M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321, 843–847 (2008).

    Article  CAS  Google Scholar 

  30. Otten, L.A. et al. Revisiting the specificity of the MHC class II transactivator CIITA in vivo. Eur. J. Immunol. 36, 1548–1558 (2006).

    Article  CAS  Google Scholar 

  31. LeibundGut-Landmann, S. et al. Mini-review: Specificity and expression of CIITA, the master regulator of MHC class II genes. Eur. J. Immunol. 34, 1513–1525 (2004).

    Article  CAS  Google Scholar 

  32. Wu, L. & Shortman, K. Heterogeneity of thymic dendritic cells. Semin. Immunol. 17, 304–312 (2005).

    Article  CAS  Google Scholar 

  33. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA 100, 8886–8891 (2003).

    Article  CAS  Google Scholar 

  34. Klein, L., Roettinger, B. & Kyewski, B. Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. Eur. J. Immunol. 31, 2476–2486 (2001).

    Article  CAS  Google Scholar 

  35. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    Article  CAS  Google Scholar 

  36. Oukka, M. et al. CD4 T cell tolerance to nuclear proteins induced by medullary thymic epithelium. Immunity 4, 545–553 (1996).

    Article  CAS  Google Scholar 

  37. Li, J., Park, J., Foss, D. & Goldschneider, I. Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J. Exp. Med. 206, 607–622 (2009).

    Article  CAS  Google Scholar 

  38. Proietto, A.I. et al. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc. Natl. Acad. Sci. USA 105, 19869–19874 (2008).

    Article  CAS  Google Scholar 

  39. Bensinger, S.J., Bandeira, A., Jordan, M.S., Caton, A.J. & Laufer, T.M. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J. Exp. Med. 194, 427–438 (2001).

    Article  CAS  Google Scholar 

  40. Liston, A. et al. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc. Natl. Acad. Sci. USA 105, 11903–11908 (2008).

    Article  CAS  Google Scholar 

  41. Spence, P.J. & Green, E.A. Foxp3+ regulatory T cells promiscuously accept thymic signals critical for their development. Proc. Natl. Acad. Sci. USA 105, 973–978 (2008).

    Article  CAS  Google Scholar 

  42. Wirnsberger, G., Mair, F. & Klein, L. Regulatory T cell differentiation of thymocytes does not require a dedicated antigen-presenting cell but is under T cell-intrinsic developmental control. Proc. Natl. Acad. Sci. USA 106, 10278–10283 (2009).

    Article  CAS  Google Scholar 

  43. Lio, C.W. & Hsieh, C.S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    Article  CAS  Google Scholar 

  44. Bautista, J.L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10, 610–617 (2009).

    Article  CAS  Google Scholar 

  45. Leung, M.W., Shen, S. & Lafaille, J.J. TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. J. Exp. Med. 206, 2121–2130 (2009).

    Article  CAS  Google Scholar 

  46. Derbinski, J., Pinto, S., Rosch, S., Hexel, K. & Kyewski, B. Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc. Natl. Acad. Sci. USA 105, 657–662 (2008).

    Article  CAS  Google Scholar 

  47. Venanzi, E.S., Melamed, R., Mathis, D. & Benoist, C. The variable immunological self: genetic variation and nongenetic noise in Aire-regulated transcription. Proc. Natl. Acad. Sci. USA 105, 15860–15865 (2008).

    Article  CAS  Google Scholar 

  48. Grusby, M.J., Johnson, R.S., Papaioannou, V.E. & Glimcher, L.H. Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science 253, 1417–1420 (1991).

    Article  CAS  Google Scholar 

  49. Chang, C.H., Guerder, S., Hong, S.C., van Ewijk, W. & Flavell, R.A. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity 4, 167–178 (1996).

    Article  CAS  Google Scholar 

  50. Kirberg, J. et al. Thymic selection of CD8+ single positive cells with a class II major histocompatibility complex-restricted receptor. J. Exp. Med. 180, 25–34 (1994).

    Article  CAS  Google Scholar 

  51. Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).

    Article  CAS  Google Scholar 

  52. Bot, A., Bot, S., Antohi, S., Karjalainen, K. & Bona, C. Kinetics of generation and persistence on membrane class II molecules of a viral peptide expressed on foreign and self proteins. J. Immunol. 157, 3436–3442 (1996).

    CAS  Google Scholar 

  53. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  54. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3 Article 3 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Kyewski for critical reading of the manuscript; C. Federle and S. Hoeflinger for technical assistance; C. Theussl for BAC injections; M.S. Anderson (University of California, San Francisco) for Adig mice; K. Karjalainen (Nanyang Technological University) for A5 hybridoma cells; and H.S. Scott (University of Adelaide) for monoclonal antibody to Aire. Supported by the Deutsche Forschungsgemeinschaft (KL 1228/3-1 to L.K. and M.H.; SFB 455 to L.K. and M.A.; and VO 944/2-2 to D.V.) and the Austrian National Science Fund (SFB23).

Author information

Authors and Affiliations

Authors

Contributions

M.H. generated and analyzed the C2TAkd model as well as the compound transgenic mice and bone marrow chimeras and was also essentially involved in all other experiments; M.A. did expression analyses by quantitative PCR; O.P.d.C. and R.H. did microarray experiments; D.V. provided ΔDC mice; and L.K. and M.H. designed experimental strategies and wrote the manuscript.

Corresponding author

Correspondence to Ludger Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1321 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinterberger, M., Aichinger, M., Prazeres da Costa, O. et al. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nat Immunol 11, 512–519 (2010). https://doi.org/10.1038/ni.1874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1874

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing